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Local imaging of diamagnetism in proximity-coupled niobium nanoisland arrays on gold thin films
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In this work, we study the effect of engineered disorder on the local magnetic response of proximity-coupled
superconducting island arrays by comparing scanning superconducting quantum interference device (SQUID)
susceptibility measurements to a model in which we treat the system as a network of one-dimensional (1D)
superconductor–normal-metal–superconductor Josephson junctions, each with a Josephson coupling energy EJ

determined by the junction length or distance between islands. We find that the disordered arrays exhibit a spa-
tially inhomogeneous diamagnetic response which, for low local applied magnetic fields, is well described by this
junction network model, and we discuss these results as they relate to inhomogeneous 2D superconductors. Our
model of the static magnetic response of the arrays does not fully capture the onset of nonlinearity and dissipation
with increasing applied field, as these effects are associated with vortex motion due to the dynamic nature of the
scanning SQUID susceptometry measurement. This work demonstrates a model 2D superconducting system
with engineered disorder, and it highlights the impact of dissipation on the local magnetic properties of 2D
superconductors and Josephson junction arrays.

DOI: 10.1103/PhysRevB.106.054521

I. INTRODUCTION

The effects of disorder and inhomogeneity on the su-
perconducting properties of thin films have attracted both
practical and theoretical interest, particularly in the pres-
ence of spatial correlations [1–3]. Disorder has been shown
to weaken superconductivity in single-crystal Sr2RuO4 and
thin-film YBa2Cu2O7−δ [4,5]. In contrast, disorder in mono-
layers of TaS2 was recently reported to enhance the critical
transition temperature [6]. In single atomic layers of lead
on silicon, the presence of disorder can lead to atomically
short Josephson weak links [7]. The addition of correlated
disorder in superconductors can be beneficial for some as-
pects of superconductivity compared to systems without
correlation [8]. In YBa2Cu2O7−δ, microstructures of colum-
nar defects introduced by irradiation pin flux lines more
strongly than random point defects, shifting the irreversibil-
ity line significantly upward [9–11]. In two-dimensional
(2D) superconductor-to-insulator systems, the existence of
disorder is thought to create weakly coupled islands of su-
perconductivity; with increasing disorder, such islands can
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remain even beyond the superconductor-insulator transition
[12,13]. In numerical studies of the quantum XY model,
correlated disorder was shown to cause a broadening of the
Berezinskii-Kosterlitz-Thouless (BKT) transition with respect
to temperature, whereas uncorrelated disorder had no effect
on the sharpness of the transition [14]. Inhomogeneity at any
lengthscale can also complicate the interpretation of bulk or
sample-averaged measurements.

Given the effect of both correlated and uncorrelated dis-
order on superconducting systems, one open question is
as follows: How do spatial correlations in disorder affect
the magnetic response of a 2D superconducting system?
To explore this question, we used scanning superconducting
quantum interference device microscopy (scanning SQUID
microscopy or SSM) to measure the local diamagnetic re-
sponse of arrays of niobium islands with proximity coupling
via a thin layer of gold. Superconducting island arrays on
normal metal can be a useful model for studying disorder
in 2D superconductors, as both the disorder and the critical
current can be engineered by changing the spacing between
superconducting islands [15–17].

Previously, Eley et al. showed that transport in ordered
arrays of niobium islands on gold can be modeled by treating
the entire array as a single diffusive superconductor–normal-
metal–superconductor (SNS) junction with a junction length
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equal to the island-to-island spacing, d [18]. Neighboring
islands couple to each other by proximitizing the underly-
ing gold, and the system undergoes a BKT transition with
decreasing temperature [19–21]. In this work, we study the
effect of engineered disorder on the local magnetic response
of proximity-coupled superconducting island arrays by com-
paring SSM susceptibility measurements to a model in which
we treat the system as a network of one-dimensional (1D)
SNS Josephson junctions, each with a Josephson coupling
energy EJ determined by the junction length or distance
between islands. We find that the disordered arrays exhibit
a spatially inhomogeneous diamagnetic response that, for
low applied magnetic fields, is well described by this junc-
tion network model. Upon increasing the applied field, the
response becomes nonlinear and dissipative, with both the
degree of nonlinearity and the spatial structure of the dis-
sipative effects depending strongly on the details of the
engineered disorder in a way that is not fully captured by the
model.

II. METHODS

We measured arrays with three types of island config-
urations: (i) ordered, (ii) uncorrelated disorder, and (iii)
correlated disorder (Fig. 1). The ordered array consists of a
100 × 100 μm2 square lattice of nominally circular niobium
islands, with a lattice constant a = 500 nm; each island in
the array has a diameter Disland = 260 nm and a height of
100 nm. The minimum edge-to-edge island spacing in the
ordered array is therefore d0 = a − Disland = 240 nm. The
disordered arrays were generated by displacing the island
positions in the ordered array by a distance |�R| drawn from a
normal distribution f (|�R|) = 1

σ
√

2π
exp (−|�R|2

2σ 2 ) with stan-
dard deviation σ [22]. For arrays with uncorrelated disorder,
this process defined the final island locations. To generate
correlated disorder, an additional filter kernel was applied to
normally distributed island displacements so that the covari-
ance of the displacements of any two islands is described by
the correlation function

R(z) = σ 2 exp

(
− z2

�2

)
, (1)

where z is the center-to-center distance between pairs of is-
lands in the square lattice, and � = 5 μm is the correlation
length [22].

For each array, the locations of the islands were patterned
onto a 10-nm-thick gold film with lateral dimensions 80 ×
80 μm2 using electron beam lithography, after which the nio-
bium islands were deposited using electron beam evaporation.
Transport measurements performed in a dilution refrigera-
tor with a base temperature of 10 mK show two distinct
transition temperatures: one from the niobium islands them-
selves entering the superconducting regime (T1), and a second,
lower transition temperature (T2) marking the onset of phase
coherence in the proximitized gold film [16] (see the Sup-
plemental Material [23], which includes Refs. [24–30]). The
superconducting transition temperature of the niobium islands
themselves is lower than that of bulk niobium, consistent with
previous work [31].

FIG. 1. Device and sensor geometry. (a) Optical image of the
ordered array. The background is the SiO2 substrate, the bright pink
regions are bare gold film, the gray region is niobium islands directly
on SiO2, and the dark pink central 80 μm × 80 μm region is niobium
islands on top of the gold film. (b)–(d) Schematic of the designed
island positions for a 30 μm × 30 μm region of (b) the ordered array,
(c) an uncorrelated disordered array (σ = 40%), and (d) a correlated
disordered array (σ = 15%). The islands are drawn to scale, i.e.,
each island has a diameter of 260 nm. The SQUID susceptometer
geometry is shown in (b), with the field coil in blue (large radius) and
the pickup loop in red (small radius). There are also superconducting
shields covering the field coil and pickup loop leads, which are
shown as orange and green polygons, respectively.

The arrays were studied using a scanning SQUID mi-
croscope mounted in a helium-3 refrigerator at its base
temperature, T = 400 mK. The scanning SQUID suscep-
tometer used in this work consists of gradiometric concentric
pickup loop and field coil pairs, with pickup loop inner radius
rinner

PL = 1.7 μm (outer radius router
PL = 2.7 μm) and field coil

inner radius rinner
FC = 5.5 μm (outer radius router

FC = 8.0 μm)
[Fig. 1(b)] [32]. Using an SR830 lock-in amplifier, we apply
a local low-frequency ac magnetic field to the array using
the field coil carrying current IFC, and we record the flux
�PL through the pickup loop generated by the array’s re-
sponse as a function of the field coil position. We define this
response, normalized by the current through the field coil,
as the local susceptibility, φ = �PL/IFC, which we report in
units of �0/A, where �0 is the superconducting flux quantum.
The gradiometric design of the SQUID susceptometer allows
us to detect a local magnetic response due to current flow-
ing in the arrays, �PL = φIFC, which is much smaller than
the flux through the pickup loop due to the field coil. For
example, the measurements presented below have a typical
signal magnitude of ∼1 �0/A (with signal-to-noise ratio � 1
except at very small IFC), which is approximately 1/1000 of
the intrinsic mutual inductance between the field coil and the
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TABLE I. Designed disorder in measured arrays. The standard
deviation σ of the island displacement distribution is expressed as
a percentage of the island spacing in the ordered array. The island
positions in UC4 are generated without reference to the ordered
array. Instead, we randomly select points in a 100 × 100 μm2 area
according to a uniform distribution.

Sample Type of disorder σ

Ordered Ordered 0%
UC3 Uncorrelated 40%
UC4 Uncorrelated Uniformly distributed
C2 Correlated 10%
C3 Correlated 15%

pickup loop. (See the Supplemental Material [23] for a more
detailed description of the sensor design and susceptometry
measurement technique.) The susceptibility φ has a compo-
nent φ′ that is in-phase with the applied field and a component
φ′′ that is out-of-phase with the applied field. The in-phase
component is a measure of the local diamagnetic screening in
a superconducting sample and hence the London penetration
depth or superfluid density, while the out-of-phase component
is a measure of dissipative currents. The measurements were
performed at nominally zero applied global field, so that the

only applied field was the local ac field from the susceptome-
ter field coil.

III. RESULTS AND DISCUSSION

We imaged five arrays: one completely ordered, two with
uncorrelated disorder, and two with correlated disorder, as
summarized in Table I. We applied root-mean-square (rms)
field coil currents IFC from 0.012 mA up to 3.024 mA,
corresponding to about 1-300 μT at the center of the field
coil, at a frequency of fFC = 800 Hz to probe the linear and
nonlinear regimes of the diamagnetic response. The in-phase
susceptibility images reveal striking differences in the spatial
structure of the diamagnetic susceptibility between the com-
pletely ordered array and arrays with disorder (Fig. 2). At the
lowest field coil current, the ordered array shows homoge-
neous diamagnetic screening [Fig. 2(a)]. From the magnitude
of the in-phase susceptibility signal, we estimate an effective
2D penetration depth (equal to half the Pearl length [33])
of 	 > 500 μm, indicating weak Meissner screening and a
small superfluid density [34]. Only at higher field coil cur-
rents does spatial structure appear in the form of reduced
diamagnetism at the edge of the array [Figs. 2(b) and 2(c)].
In contrast, in all the arrays with engineered disorder, our
measurements reveal significant spatial inhomogeneity in the
local diamagnetic response. The diamagnetism in these arrays

FIG. 2. Inhomogeneous, nonlinear diamagnetic response in disordered arrays under increasing local applied field. In-phase susceptibility
φ′ (black-to-white colormap) and out-of-phase susceptibility φ′′ (black-to-yellow colormap) for the three arrays whose island positions are
shown in Figs. 1(b)–1(d), measured at three different rms field coil currents IFC. All images share the scale bar given in panel (a) and were
taken at the same nominal sensor height and temperature. Note that panels (d,e,j,p) only show noise, as φ′′ was below the measurement noise
floor for these measurements with small IFC. The colored boxes in panels (a,g,m) indicate the central 50 × 50 μm2 regions for which the
distributions of φ′ are shown as a function of IFC in Figs. 3(a), 3(b) and 3(e), respectively. Measurements of all five samples listed in Table I
can be found in the Supplemental Material [23].
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FIG. 3. Distribution of in-phase susceptibility φ′ in SSM images for all measured samples as a function of field coil current. The shaded
“violins” show the empirical probability distribution of the susceptibility signal φ′ in the central 50 × 50 μm2 region of each array [see the
colored boxes in Figs. 2(a), 2(g) and 2(m)], and the black diamonds and dashed lines show the average over this region. The response of the
ordered array (a) is linear in the sense that the magnitude and spatial distribution of the diamagnetic susceptibility are constant as a function
of the applied field. In contrast, the disordered arrays (b)–(e) respond nonlinearly at all but the lowest field coil currents. The magnitude of φ′

depends strongly on the sensor height, or the distance between the SQUID field coil and the sample. The data for C2 were taken at 2-3 μm
higher sensor height compared to the ordered and uncorrelated arrays, resulting in a relative overall reduction in signal magnitude. Similarly,
the stronger average in-phase susceptibility for C3 most likely indicates that this sample was measured with a smaller sensor height than the
ordered and uncorrelated arrays [23].

varies on a lengthscale of a few microns over the entirety
of the array [Figs. 2(g)–2(i) and 2(m)–2(o)]. In arrays with
correlated disorder, this inhomogeneity can be seen even at
the smallest applied field [Fig. 2(m)].

The magnitude and spatial structure of the diamagnetic
susceptibility are not constant as a function of the applied
field. In Fig. 3, the distribution of in-phase diamagnetic sus-
ceptibility for each array is plotted as a function of applied
field coil current, revealing differences between the ordered
and disordered samples in the linearity of the diamagnetic
response with respect to the local applied field. Because φ′
necessarily goes to zero at the edges of the arrays, in Fig. 3 we
plot the distribution of φ′ only from the central 50 × 50 μm2

region of each array [see the colored boxes in Figs. 2(a),
2(g) and 2(m)]. Except near the edges of the gold film, the
ordered sample remains in the linear regime (i.e., the sus-
ceptibility is constant as a function of applied field, and the
out-of-phase susceptibility φ′′ is small) up to IFC = 1.512 mA
[Figs. 2(a)–2(f) and Fig. 3(a)], while the disordered samples
enter the nonlinear regime, with decreasing in-phase suscepti-
bility φ′ and significant dissipative out-of-phase susceptibility
φ′′, at applied field coil currents as low as IFC = 0.312 mA
[Figs. 2(g)–2(l) and 2(m)–2(r), and Figs. 3(b)–3(e)]. At the
highest IFC, the ordered array begins to exhibit an inhomo-
geneous response [Figs. 2(c) and 2(f)], which we attribute to
heating of the gold film due to vortex motion near the edges
of the array [23].

To explore the role of disorder in the inhomogeneous,
nonlinear magnetic response of this engineered 2D super-
conductor, we have modeled the system as a network of 1D
SNS Josephson junctions in which pairs of adjacent islands
form junctions with critical current Ic, or Josephson energy
EJ = Ic�0/2π , determined by the junction length or edge-
to-edge island spacing d (see Fig. 4). Eley et al. found that
for ordered triangular arrays of niobium nanoislands on gold,
the dependence of the critical current of the entire array on

edge-to-edge island spacing d and temperature T is well de-
scribed by the expression for a single diffusive SNS junction:

Ic(d, T ) = c0
ETh(d )

eRN

[
1 − c1 exp

(
−c0ETh(d )

3.2kBT

)]
, (2)

where RN is the normal state resistance, kB is Boltzmann’s
constant, and c0 and c1 are dimensionless fitting parameters,
which are of order 1 [18,35]. The Thouless energy ETh is given
by ETh(d ) = h̄D/d2, where D is the normal-metal diffusion
constant, with D = 95 cm2/s for the gold films studied here.
At temperatures T that are small compared to the Thouless
energy ETh/kB (≈1.26 K for the ordered array), Eq. (2) is
dominated by the term c0ETh/eRN ∝ 1/d2. We therefore as-
sume that the critical current of each junction is given by
Ic(d ) = I0(d0/d )2, where d0 = 240 nm is the minimum is-
land spacing for the ordered array [Fig. 1(b)] and I0 is a
constant that corresponds to the maximum critical current per
junction in the ordered array. The value of I0 determines the
overall strength of the diamagnetic response, and we select
it to roughly match the magnitude of the measured in-phase
susceptibility.

We model the field coil and pickup loop as 1D circular
loops with radii rFC = 6.8 μm and rPL = 2.5 μm, respectively
(see Fig. 4). Given the applied magnetic vector potential A(r)
due to a current IFC in the field coil, we solve for the super-
conducting phase ϕi of each island i centered at position ri

in the network, subject to the constraints of current conserva-
tion and phase single-valuedness, via a large-scale nonlinear
programming solver [23,36,37]. We then calculate the super-
current flowing between each pair of islands (i, j) assuming a
sinusoidal current-phase relation Ii j (θi j, di j ) = Ic(di j ) sin θi j ,
where di j = |ri − r j | − Disland is the junction length and θi j =
ϕ j − ϕi − 2π�−1

0

∫ r j

ri
A(r) · dr is the gauge-invariant phase

across the junction. Finally, we compute the flux �PL through
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FIG. 4. Junction networks for a single field coil position for each
of the five arrays studied in this work. Each line represents a sin-
gle junction with critical current Ic(d ) = I0(d0/d )2 indicated by the
shade of the line as shown by the colorbar. The colorbar is saturated
at 260 nA because in the uncorrelated arrays there are a small number
of very short (i.e., high critical current) junctions. Locations where
lines intersect correspond to the center of a niobium island. For all
five arrays, we use a junction cutoff radius rcutoff = 0.9 μm and
a critical current scale of I0 = 260 nA. For the sake of visibility,
the networks shown here use a patch radius rpatch = rFC = 6.8 μm,
which is a factor of 2.5 smaller than the patch radius used in the
simulations. (a) The ordered array: a square lattice of islands with
lattice constant a = 500 nm. The blue circle shows the 1D loop used
to model the field coil, and the red circle shows the 1D loop with
radius rPL = 2.5 μm used to model the pickup loop. (b) Array UC3:
uncorrelated disorder with σ = 40%. (c) Array UC1: uniformly
distributed island positions. (c) Array C2: correlated disorder with
σ = 10%. (d) Array C3: correlated disorder with σ = 15%.

the pickup loop due to the supercurrent flowing in the network
to obtain a simulated in-phase susceptibility φ′ = �PL/IFC.

It is not computationally practical to model the response
of all ∼25 000 islands in an array simultaneously, so we
make two simplifying approximations. First, for each field
coil position, we construct a network or graph containing
only islands inside a “patch” of radius rpatch = 17 μm =
2.5 × rFC around the center of the field coil. If the field coil is

positioned zFC = 2 μm above the array, the magnitude of the
field from the field coil at the edge of the patch is ≈4% of
the field at the center, and junctions outside of the patch are
at least rpatch = 6.8 × rPL away from the center of the pickup
loop. Therefore, junctions outside of rpatch are both weakly
influenced by the field from the field coil and inefficient at
coupling flux into the pickup loop, such that they do not
contribute significantly to the susceptibility signal. In practice,
increasing rpatch by 20%, from 2.5 × rFC to 3 × rFC, increases
the simulated susceptibility by <3% and does not significantly
affect the spatial structure [23]. Second, we assume that only
islands whose centers lie within a radius rcutoff = 0.9 μm of
one another form junctions. We chose rcutoff = 0.9 μm so
that 2ξN < rcutoff < 2a, where ξN = √

h̄D/kBT ≈ 0.425 μm
is the normal-metal coherence length and a = 0.5 μm is the
ordered array lattice constant [18,38,39]. For this patch radius
and junction cutoff radius, a typical patch contains a few thou-
sand islands and 10 000-20 000 junctions [23]. Note that this
model simulates the static magnetic response of the arrays,
but the local field applied by the SQUID field coil varies
sinusoidally at a frequency fFC = 800 Hz. Thus, an additional
assumption is that fFC is slow compared to other timescales
in the system, such that the applied field can be approximated
as time-independent. This model also neglects any inductive
coupling between the junctions, which we expect to be small
given the very weak screening in this system [40].

A comparison of the in-phase susceptibility φ′ measured
in the SSM experiments and simulated using the junction
network model is shown in Fig. 5. The model reproduces the
spatially uniform and linear magnetic response in the ordered
array [Figs. 5(a), 5(f) and 5(k)]. In the arrays with uncorrelated
disorder, the local diamagnetic response exhibits a granular
spatial structure [Figs. 5(b) and 5(c)], and φ′ is suppressed
more rapidly with increasing applied field than in the ordered
array or the arrays with correlated disorder [Figs. 3(b) and
3(c)]. Both of these effects are captured qualitatively by the
junction network model [Figs. 5(g) and 5(h) and Figs. 5(l) and
5(m)]. The simulated susceptibility of the correlated arrays is
in good agreement with the measurements [Figs. 5(d) and 5(i)
and Figs. 5(e) and 5(j)], which is most easily visible in array
C3 [Figs. 5(e) and 5(j)] as it exhibits the highest contrast and
most distinctive spatial features in φ′ as a function of field coil
position.

The magnitude of φ′ depends strongly on the distance zFC

between the field coil and the sample, and in this particular ex-
periment there was significant uncertainty (∼2-3 μm) in zFC.
This is likely the cause of the discrepancy in the magnitude of
φ′ at low field coil currents between Fig. 3 (experiment) and
Figs. 5(k)–5(o) (simulation), and it is why we plot the normal-
ized susceptibility φ′/φ′

max in Figs. 5(a)–5(j). We expect that
if zFC were known with a high degree of certainty, the junc-
tion network model would reproduce quantitatively both the
magnitude and spatial structure of the in-phase susceptibility
at low applied fields.

Although susceptibility simulations using the junction net-
work model do exhibit nonlinearity with increasing applied
field as the gauge-invariant phase θ across junctions in the
network becomes large enough that sin θ ≈ θ is not a good
approximation [see Figs. 5(k)–5(o) and the Supplemental Ma-
terial [23]], in all cases the observed onset of nonlinearity
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FIG. 5. Comparison between the measured and simulated in-phase susceptibility φ′ for all five arrays. Top row (a)–(e): Normalized in-phase
susceptibility φ′/φ′

max measured at IFC = 0.05 mA for panels (a,b,c,e) and IFC = 0.1 mA for panel (d). Middle row (f)–(j): φ′/φ′
max calculated

using the junction network model with a field coil current of IFC = 0.05 mA, a distance of zFC = 2 μm between the sample surface and
SQUID field coil, and a critical current scale of I0 = 260 nA. Bottom row (k)–(o): Distribution of simulated in-phase susceptibility φ′ vs field
coil current, demonstrating the nonlinearity of the junction network model, the onset of which occurs at a higher field coil current than in
experiment [compare to Fig. 3, where φ′ is heavily suppressed in the uncorrelated arrays (b) and (c) well below IFC = 2 mA]. As in Fig. 3,
we plot only the distribution of φ′ in the central 50 × 50 μm2 region of each array [see the colored boxes in (f)–(j)]. The black diamonds and
dashed lines indicate the average susceptibility in these regions. Note that there are several regions near the center of array UC4 [panel (c)]
where niobium islands have been scraped off due to contact with the SQUID susceptometer, which is not accounted for in the model. See
Fig. 4 and the Supplemental Material [23] for more details on the simulations.

in simulation occurs at a larger applied field than in ex-
periment. For example, the ordered array shows appreciable
out-of-phase response at IFC = 1.512 mA [Fig. 2(f)], how-
ever the flux through an a × a = 500 × 500 nm2 square unit
cell or “plaquette” due to a loop with radius rFC = 6.8 μm
carrying IFC = 1.512 mA is <0.017 �0, corresponding to
a gauge-invariant phase difference of θ < 2π × 0.017/4 ≈
0.027 radians across each of the four junctions in the plaque-
tte, a value for which sin θ ≈ θ is a very good approximation.
Furthermore, this mechanism for nonlinearity is purely geo-
metric, having no dependence on the overall strength of the
Josephson coupling in the system (which is set in the model
by the critical current scale I0).

This suggests that there is another mechanism contribut-
ing to the onset of nonlinearity and dissipation in these
arrays. One candidate is motion of vortices induced in the
2D superconducting system above a lower critical field Bcrit

0 ,
as has been studied theoretically for uniform applied fields
[41,42] and for nonuniform applied fields in the context
of two-coil mutual inductance susceptibility measurements
[43–45]. Lemberger and Ahmed [44] found that for a 2D
superconductor in the weak screening (large 	) limit with
Ginzburg-Landau coherence length ξ subject to a nonuniform
field from a point dipole or small current loop, there can

be no vortex-free state above a lower critical field Bcrit
0 ≈

�0/(2ρ0ξ ), where ρ0 � 	 is the radial distance from the
magnetic source at which the applied field changes sign. This
relationship between the coherence length ξ and the onset of
vortex-related nonlinear magnetic response has been used to
measure ξ in superconducting thin films [45]. For our field
coil with radius rFC = 6.8 μm located 2 μm above the film,
the applied field changes sign at ρ0 ≈ 7.5 μm. Assuming
ξ = a for the ordered square array with lattice constant a
[39] gives a lower critical field Bcrit

0 ≈ 275 μT, or a lower
critical field coil current Icrit

FC ≈ 3.4 mA. The actual applied
field (or field coil current) at which nonlinearity due to vortex
dynamics begins to occur is necessarily smaller than this max-
imum vortex-free field, which is consistent with the SQUID
measurements [Fig. 2(f)]. In a homogeneous 2D superconduc-
tor, vortices are expected to first appear at the position with
the highest superfluid momentum, i.e., the position where the
vector potential |A(r)| is largest [44,46], and we expect the
same to be true for the ordered array. Any vortices that are
present will experience a force due to the local ac applied
field from the field coil. If the vortices are not strongly pinned,
they will move under this force, and it is this vortex motion
that causes dissipation. For a detailed analysis of the impact
of vortex dynamics on two-coil mutual inductance measure-
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ments of 2D superconductors, see Ref. [47]. Viewed through
this lens, our results (Figs. 2 and 3) suggest that disorder
in the island spacing affects both the superfluid density and
the coherence length ξ of the 2D superconductor formed by
the proximity-coupled nanoislands, and that both quantities
can be probed locally with SSM via the linear and nonlinear
magnetic response, respectively.

Future work will focus on the magnetic response of ordered
proximity-coupled island arrays as a function of the island
spacing over a wider range of local applied ac field. Such
measurements will allow us to validate our model for the
island spacing dependence of the junction critical currents,
Ic(d ), and quantify how well the junction network model
describes nonlinearities at higher applied field, which will in
turn inform the design of future experiments on arrays with
different geometries and materials. Beyond scanning SQUID
microscopy, the proximity effect model systems introduced
here could potentially be studied with time- or frequency-
resolved imaging to better understand the dynamics causing
dissipative behavior [48].

In summary, we have demonstrated the design, control,
and measurement of a model superconducting system with
engineered disorder to simulate the spatial evolution of su-
perfluid density and phase coherence in 2D superconductors
with micron-scale disorder. Scanning SQUID microscopy
measurements reveal a magnetic response that is nonlin-
ear and spatially inhomogeneous, and this response can be
tuned by changing the disorder landscape. For small ap-
plied fields, the local diamagnetic response of the arrays

is in good agreement with a model that treats the system
as a network of Josephson junctions with island spacing-
dependent Josephson coupling. However, we find that the
onset of nonlinearity and dissipation with increasing applied
field cannot be fully explained simply by considering the
nonlinear (i.e., sinusoidal) current-phase relation of the junc-
tions. This motivates future work on a theoretical description
that incorporates the rich nonlinear and dissipative physics
underlying this engineered, disordered 2D superconducting
system.
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