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2D superconducting film,  Numerically solve

penetration depth A, 2D London equation

applied field poH, ,ypjied

Physics Wish List

Inhomogeneous A(x, y)

Fluxoid quantization and mutual inductance
in multiply-connected films

Trapped vortices
Stacked 2D films
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Extract Meissner screening
currents and self-field

Software Wish List

User friendly
Fast

Open source
Portable
Interactive
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The model

V- J =0 = scalar stream function g(x,y):
(x,y) = V X (g2)

2D London equation in terms of g:

N e A A
H(xy) =— VZg(x, )2 = AV3g(x,y)2

1. Brandt & Clem, PRB 69, 184509 (2004).
2. Brandt, PRB 72, 024529 (2005).

3. Khapaev, Supercon. Sci. Technol. (1997).
4. Kirtley, ..., Supercon. Sci. Technol. (2016).

Biot-Savart in terms of g:
Applied field Screening field Total field
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Numerical implementation
Applied field Screening field Total field

film

Discretize film and surrounding vacuum

» Delaunay triangulation —> n vertices with areas w
= Dipole kernel QZ —> dense n X n floating point matrix Q

V‘Yr

N

= Laplace operator V2 —> sparse n X n floating point matrix L

YA/
D

7S

Solve linear system for unknown vector g inside the film:

h —(Q.w'—L.ADg (%)

z, applied —

1. Brandt, PRB 72, 024529 (2005).
2. Kirtley, ..., Supercon. Sci. Technol. (2016).
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Open source software implementation

A SuperScreen —SuperScreenc X+ ©
© @ superscreen.readthedocs.io ates Q © % @ Incognito
4 SuperScreen
@ » SuperScreen O Edit on GitHub
SuperScreen pip install superscreen

Installation
Quickstart

Background

Working with polygons

Magnetic field sources

Saving and loading models

Parallel processing

DOI 10.5281/zenodo.5911569

Devices & Geometry SuperScreen is an open-source Python package for simulating the magnetic response of 2D
Solver superconductors and multiplanar superconducting devices of arbitrary geometry. Using a matrix
inversion method introduced by Brandt [Brandt-PRB-2005], SuperScreen solves the coupled

Generating the SuperScreen logo

Finite Element Methods
London’s and Maxwell’s equations in and around superconducting films with spatially-varying

& Read the Docs penetration depth in the presence of applied magnetic fields and trapped flux.

superscreen.readthedocs.io, github.com/loganbvh/superscreen Stanford University
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Example: Superconducting ring with a slit

import superscreen as sc |mp0rt the
from superscreen.geometry import circle, box

: package
# Define the device geometry.

Tongth mite = "um® Mesh Current density,]

ro = 3 # outer radius

ri =1 # inner radius 12.5
slit_width = 0.25
Lambda = 1 # effective penetration depth 10.0
# circle() and boz() generate arrays of polygon (z, y) coordinates. )
ring = circle(ro) —
hole = circle(ri) 7.5 <__(L|E
slit = box(slit_width, 1.5 * (ro - ri), center=(0, -(ro + ri) / 2)) Deflne :1
# Define the Polygon representing the superconductor. 5.0 T~
layer = sc.Layer("base", Lambda=Lambda)
film = sc.Polygon.from_difference( geometry

[ring, slit, holel, name="ring with_slit", layer="base" and materlals 2.5

)

bounding_box = sc.Polygon("bounding box", layer="base", points=circle(1.2 * ro))

# Create a Device and generate and plot the computational mesh.

device = sc.Device(
film.name, “
layers=[layer],
films=[film],
abstract_regions=[bounding_box],
length_units=length_units,

)
device.make_mesh(min_points=3500, optimesh_steps=None)

device.plot (mesh=True) SO|Ve

# Calculate the device's response to a uniform applied field.
applied_field = sc.sources.ConstantField(10) the mOdel
solution = sc.solve(device, applied_field=applied_field, field_units="uT")[-1]
# Visualize the solution.

# Plot the current density evaluated at each layer in the Device.

solution.plot_currents() Visualize

# Plot the magnetic field evaluated at each layer in the Device.
solution.plot_fields()

# Plot the field evaluated at any points in space. the reSUItS
solution.plot_field_at_positions(device.points, zs=0.5)

Stanford University
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Example: Trapped vortices, inhomogeneous A(x, y)

HoH; (base)

vortices = [ 1
sc.Vortex(x=1.5, y=1.5, layer="base"), 'c
sc.Vortex(x=-1.5, y=-1.5, layer="base"), 2z 0
sc.Vortex(x=0, y=2.5, layer="base"), >‘_1_
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Example: Fluxoid states

Fluxoid quantization: flux part supercurrent part
S oS

A =025 Him, MOHZ, applied = 1mT
a 3

g S N W e e

Singly-connected films, N, = 0 holes

. . - . T o/ =0®
= Fluxoid quantization satisfied by solutions to ; =  rectangle 0
2D London equation withn = 0 3 Cbﬁmpse =09,

Multiply-connected films, N, > 0 holes
= Adjust circulating currents {/,} via gradient
descent to realize desired fluxoid state {CI)J;}

. . rectangle __
» Can also compute mutual inductance matrix: 1 = - 107mA

2<Ez'_'§ circ.
‘D'ﬁ 1 = IelPse — _ 1.50mA
olet —  “cire.
M, =
7L 1
circ. j

0
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Model 2D superconductors

» Create complex geometries and solve for their magnetic response in a
few lines of code

» Generate publication-quality visualizations
» Run on a laptop, HPC cluster, or anything in between

Share simulations with the research community

» Publish interactive Jupyter notebooks to allow others to learn from and
reproduce your results

Logan Bishop-Van Horn, superscreen.readthedocs.io Stanford University
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Additional Features Use Cases
= Built-in magnetic field sources: distribution = Inductance extraction for 2D superconducting (e.g.

of dipoles, monopoles, Pearl vortices, 2D VdW) devices
current distribution = Modeling of magnetic microscopy, including
= Robustly save/load results to/from disk scanning SQUID magnetometry + susceptometry
= Extensive online documentation
= Automated unit test suite Future Work
» GPU-acceleration
Limitations = Automated or adaptive mesh refinement
- 2D only: A yoqon > d = Integration with CAD software/file formats
= Only circulating currents, no “terminal
currents” Acknowledgements
= Slow convergence + memory-intensive for = John Kirtley: MATLAB implementation for modeling
structures with many layers scanning SQUID microscopy:

- Supercond. Sci. Technol. 29 (2016) 124001.
- Rev. Sci. Instrum. 87, 093702 (2016).

= John Kirtley, Yusuke Iguchi: useful comments,
discussions
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Example: Self-inductance of a flat ring

"supercurrent part”

"flux part"
. of  [uHF) P+ U AR T (F) - dF
Icirc. Icirc.
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= Lgeo. + Lyn,

'ge0.

L =2upa [1, analytical as a/b — 0]
3D-MLSI [2, full 2D model]
LCR2D [2, axisymmetric model]
Brandt & Clem[3, axisymmetric model]
N/b =0.00
N/b =0.01
N/b=0.03
Nb=0.10
N/b=0.30
1. Brojeny, .., Clem, PRB 68 174514 (2003).
2. Khapaev, Supercon. Sci. Technol. (1997).

3. Brandt & Clem, PRB 69, 184509 (2004).
Stanford University
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Numerical implementation: Multiple layers

z Q_ayeﬂ Ai(x,y), 7 Film 1 )

G_ayer 0 Ayx,y), 2z Film 0

\_/

y X
( * ) hZ, applied - - (Q . WT - L . AT)g

Solve ( % ) for each layer £ to obtain stream function g,
For each layer £, add to h 4 the field due to g, for all layers k # ¢

Z, applie
Re-solve ( % ) with updated applied field
Repeat until solution converges

1. Brandt, PRB 72, 024529 (2005).
2. Kirtley, ..., Supercon. Sci. Technol. (2016).
Stanford University
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Problem statement

dl { G_ayer 1 AGy) g Film 2 )
do{ CLayer 0 Agx,¥), 29 | Film O | | Film 1 |

Inputs ,
= A(x,y), z, for each layer £ ? T T T ? A= M ondon _ Apear

= X — y geometry for each film in each layer 7 d 2

. Applied field, ptoH, iied(X: s 2) HoH, applied(*Xs > 2)
Outputs
» Sheet current density Tf(x, y) in each layer £ <

= Total magnetic field ﬂoﬁ(x, y, Z) anywhere in space
Assumptions

. Layers are 2D, ﬂLondon > d, and obey the London equation y X

Vx J =—HIA Stanford University



