Quantum sensing with superconducting qubits Logan Bishop-Van Horn QSQM Symposium

2021-09-10

Transmon Hamiltonian

- Superconducting circuit with tunable charge and flux sensitivity
- Transition frequencies $\omega_{ij} = 2\pi f_{ij}$ are periodic in n_g and Φ
- E_J/E_C determines anharmonicity and charge sensitivity

PHYSICAL REVIEW A 76, 042319 (2007)

 \mathcal{C}

Suppressing charge noise decoherence in superconducting charge qubits

J. A. Schreier,¹ A. A. Houck,¹ Jens Koch,¹ D. I. Schuster,¹ B. R. Johnson,¹ J. M. Chow,¹ J. M. Gambetta,² J. Majer,¹ L. Frunzio,¹ M. H. Devoret,¹ S. M. Girvin,¹ and R. J. Schoelkopf¹

Charge-insensitive qubit design derived from the Cooper pair box (a) $E_J/E_C = 1.0$ (a) E_{01} C_B $\overline{}$ 囟 V_g -2 (b) (c) $E_J/E_C = 10.0$ $/E_{01}$ Offset charge E_m sensitive transmon -2 n_q $\hat{H} = 4E_C(\hat{n} - n_g)^2 - E_J(\Phi) \cos \hat{\varphi}$ ̂

Decoherence limits sensitivity

 $| (0 | \hat{O}_{\lambda} | 1) |^{2}, S_{\lambda}(f_{01})$ ̂

A quantum engineer's guide to superconducting qubits \bullet

Cite as: Appl. Phys. Rev. 6, 021318 (2019); https://doi.org/10.1063/1.5089550

Goal: Measure qubit frequency $f_{01}(n_{g},\Phi)$ to quantify electric potential (via n_{g}), magnetic field (via Φ), or fluctuations in those parameters (noise spectroscopy).

3

- 1/f-like charge noise in offset charge sensitive qubits is orders of magnitude worse than typically seen in SETs
- $\sim 0.1 1,000$ Hz: limits sensitivity via $T_{\rm 2}$
- \bullet $\lesssim 0.1$ Hz: frequency drift \approx 0.1 112. In equency drince $\frac{1}{2}$
complicates data-taking and $\frac{1}{2}$
analysis analysis

Anomalous charge noise in superconducting qubits

B. G. Christensen, ¹ C. D. Wilen, ² A. Opremcak, ² J. Nelson, ³ F. Schlenker, ² C. H. Zimonick, ² L. Faoro, ^{2, 4} L. B. Ioffe, 2.4 Y. J. Rosen, 3 J. L. DuBois, 5 B. L. T. Plourde, 3 and R. McDermott²

Low frequency charge noise

Coupling to sample with finite impedance

-
- But capacitive coupling to a lossy sample limits sensitivity via T_1
-

• Want to maximize $C_{\rm s}/C_{\rm tot}$ so that the sample gates the qubit island effectively • Effect is small in CPB regime, but becomes significant as E_J/E_C is increased

Measurement methods

- Can be done with only CW microwave control
- Center frequency measures the mean value of *ng* or Φ
- Linewidth measures T_2 but cannot easily be $\mathop{\mathrm{converted}}$ into a noise spectrum $S_{n_g}(\omega)$ or $S_{\Phi}(\omega)$
- Example: [Phys. Rev. Res. 2, 043031 \(2020\)](https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.043031)

Spectroscopy Interferometry

- Enables noise spectroscopy via dynamical decoupling
- Requires time domain control and reasonably highfidelity readout
- Limited dynamic range due to phase wrapping
- Limited measurement repetition rate:
	- At most 1 bit of information per measurement, then the qubit must be reset to ground state
- Example: [npj Quant. Info. 4, 29 \(2018\)](https://www.nature.com/articles/s41534-018-0078-y)

6

- Requires mK temperatures
- Requires single-photon operation and fewphoton readout
- Excess charge noise relative to SETs
- Limited measurement repetition rate
- Limited dynamic range

Imaging rf loss in SC circuits

Can we borrow ideas from SC qubit research without inheriting qubit downsides?

Fast magnetic imaging/noise spectroscopy

SQUID magnetometer with dispersive readout

- Noise spectroscopy: high BW measurement + FFT
- Compatible with parametric amplifiers
- Faster measurement repetition rate (no reset)
- See:
	- [doi:10.1103/PhysRevB.83.134501](http://doi.org/10.1103/PhysRevB.83.134501)
	- [doi:10.1088/0953-2048/26/5/055015](http://doi.org/10.1088/0953-2048/26/5/055015)
	- [doi:10.1063/1.5030489](http://doi.org/10.1063/1.5030489)

- Noise spectroscopy: high BW measurement + FFT
- Lower charge noise than charge-sensitive qubit
- See:
	- [doi:10.1126/science.280.5367.1238](http://doi.org/10.1126/science.280.5367.1238)
- Measure Q vs. position
- Could be frequency-tunable with a SQUID
- See:
	- [doi:10.1063/1.4792381](http://doi.org/10.1063/1.4792381)
	- [doi:10.1103/PhysRevX.6.021044](http://doi.org/10.1103/PhysRevX.6.021044)

Fast potential imaging/noise spectroscopy

Radio-frequency SET

Scanning high-Q SC resonator

Goal: Measure qubit frequency $f_{01}(n_g, \Phi)$ to quantify electric potential (via n_{g}), magnetic field (via Φ), or fluctuations in those parameters (noise spectroscopy).

$$
A_{n_g} = 10^{-4} e/\sqrt{\text{Hz}},
$$

$$
S_{n_g} = \frac{1}{\Gamma} \left| \frac{\partial f_{01}}{\partial n_g} \right| = 2\pi T_2 \left| \frac{\partial f_{01}}{\partial n_g} \right|
$$

-
-
- Measure linewidth $1/T_2$ spectroscopically to infer local sample temperature, resistance

40

 ω_{s} (MHz)

-
-
- dynamic range issue (phase wrapping)
-

