Quantum sensing with superconducting qubits Logan Bishop-Van Horn QSQM Symposium

2021-09-10

Transmon Hamiltonian

PHYSICAL REVIEW A 76, 042319 (2007)

Charge-insensitive qubit design derived from the Cooper pair box (a) $E_J/E_C = 1.0$ (a) E_{01} 囟 C_B E_m V_g -2 (b) (c) $E_J/E_C = 10.0$ $/E_{01}$ Offset charge E_m sensitive transmon -2 $\hat{H} = 4E_C(\hat{n} - n_g)^2 - E_J(\Phi)\cos\hat{\varphi}$

- Superconducting circuit with tunable charge and flux sensitivity
- Transition frequencies $\omega_{ij} = 2\pi f_{ij}$ are periodic in n_g and Φ
- E_J/E_C determines anharmonicity and charge sensitivity

g

Suppressing charge noise decoherence in superconducting charge qubits

J. A. Schreier,¹ A. A. Houck,¹ Jens Koch,¹ D. I. Schuster,¹ B. R. Johnson,¹ J. M. Chow,¹ J. M. Gambetta,² J. Majer,¹ L. Frunzio,¹ M. H. Devoret,¹ S. M. Girvin,¹ and R. J. Schoelkopf¹

Decoherence limits sensitivity

Goal: Measure qubit frequency $f_{01}(n_g, \Phi)$ to quantify electric potential (via n_g), magnetic field (via Φ), or fluctuations in those parameters (noise spectroscopy).

 $|\langle 0 | \hat{O}_{\lambda} | 1 \rangle|^2, S_{\lambda}(f_{01})$

A quantum engineer's guide to superconducting qubits Image: Constraint of the second second

Cite as: Appl. Phys. Rev. 6, 021318 (2019); https://doi.org/10.1063/1.5089550

З

Low frequency charge noise

- 1/f-like charge noise in offset charge sensitive qubits is orders of magnitude worse than typically seen in SETs
- ~ 0.1 1,000 Hz: limits sensitivity via T_2
- $\lesssim 0.1 \, \text{Hz}$: frequency drift complicates data-taking and analysis

Anomalous charge noise in superconducting qubits

B. G. Christensen,¹ C. D. Wilen,² A. Opremcak,² J. Nelson,³ F. Schlenker,² C. H. Zimonick,² L. Faoro,^{2,4}
L. B. Ioffe,^{2,4} Y. J. Rosen,⁵ J. L. DuBois,⁵ B. L. T. Plourde,³ and R. McDermott²

Coupling to sample with finite impedance

- But capacitive coupling to a lossy sample limits sensitivity via T_1

Want to maximize C_s/C_{tot} so that the sample gates the qubit island effectively • Effect is small in CPB regime, but becomes significant as E_I/E_C is increased

Measurement methods

Spectroscopy

- Can be done with only CW microwave control •
- Center frequency measures the mean value of n_{o} lacksquareor Φ
- Linewidth measures T_2 but cannot easily be • converted into a noise spectrum $S_{n_o}(\omega)$ or $S_{\Phi}(\omega)$
- Example: Phys. Rev. Res. 2, 043031 (2020)

Interferometry

- Enables noise spectroscopy via dynamical decoupling
- Requires time domain control and reasonably highfidelity readout
- Limited dynamic range due to phase wrapping
- Limited measurement repetition rate:
 - At most 1 bit of information per measurement, then the qubit must be reset to ground state
- Example: npj Quant. Info. 4, 29 (2018)

6

- Requires mK temperatures
- Requires single-photon operation and fewphoton readout
- Excess charge noise relative to SETs
- Limited measurement repetition rate
- Limited dynamic range

Fast potential imaging/noise spectroscopy

Radio-frequency SET

- Noise spectroscopy: high BW measurement + FFT
- Lower charge noise than charge-sensitive qubit
- See:
 - doi:10.1126/science.280.5367.1238

Can we borrow ideas from SC qubit research without inheriting qubit downsides?

Fast magnetic imaging/noise spectroscopy

SQUID magnetometer with dispersive readout

- Noise spectroscopy: high BW measurement + FFT
- Compatible with parametric amplifiers
- Faster measurement repetition rate (no reset)
- See:
 - doi:10.1103/PhysRevB.83.134501
 - doi:10.1088/0953-2048/26/5/055015
 - doi:10.1063/1.5030489

Imaging rf loss in SC circuits

Scanning high-Q SC resonator

- Measure Q vs. position
- Could be frequency-tunable with a SQUID
- See:
 - doi:10.1063/1.4792381
 - doi:10.1103/PhysRevX.6.021044

Goal: Measure qubit frequency $f_{01}(n_g, \Phi)$ to quantify electric potential (via n_g), magnetic field (via Φ), or fluctuations in those parameters (noise spectroscopy).

$$A_{n_g} = 10^{-4} e / \sqrt{\text{Hz}},$$

$$S_{n_g} = \frac{1}{\Gamma} \left| \frac{\partial f_{01}}{\partial n_g} \right| = 2\pi T_2 \left| \frac{\partial f_{01}}{\partial n_g} \right|$$

- Measure linewidth $1/T_2$ spectroscopically to infer local sample temperature, resistance

40

 ω_{s} (MHz)

- Tunable transmon, $E_J/E_C \approx 90$
- dynamic range issue (phase wrapping)

Qubit type	DC sensing	T2 noise spectroscopy (dynamical decoupling)	Scanning geometry	Advantages over [X]
Single-junction CPB Ej/Ec ~ 1	Charge: Spectroscopy only, limited by 1/f Flux: No	Charge : Low T2 makes time domain control difficult Flux : No	Charge: Seems doable Flux:	Charge (X = SET): I don't see any Flux:
CPB with SQUID Ei/Ec ~ 1	Charge, flux : Spectroscopy only, limited by 1/f, impractical measurement	Charge, flux : Low T2 makes time domain control difficult	Charge + Flux: Seems pretty hard	Charge (X = SET): I don't see any Flux (X = SQUID): I don't see any Charge + Flux (X = SET + Hall): I don't know
Offset charge-sensitive transmon Ej/Ec ~ 10-20	Charge: Spectroscopy or interferometry, limited by sample impedance or 1/f Flux:	Charge: Yes, possibly limited by sample impedance Flux:	Charge: Seems doable Flux:	Charge (X = SET): Noise spectroscopy, can measure SC samples Flux:
Tunable transmon Ej/Ec ~ 50	Charge: No Flux: Spectroscopy or interferometry	Charge: No Flux: Yes, requires fast control and readout	Charge: Flux: Seems doable	Charge: Flux (X = SQUID): Noise spectroscopy (is this more useful than a fast SQUID?
Flux qubit	Charge: No Flux: Spectroscopy or interferometry	Charge : No Flux : Yes, requires fast control and readout	Charge: Flux: I don't know	Charge: Flux (X = SQUID): Noise spectroscopy (is this more useful than a fast SQUID?

