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Quantitative understanding of the spatial distribution of magnetic fields and Meissner screening currents 
in two-dimensional (2D) superconductors and mesoscopic thin film superconducting devices is critical to 
interpreting the results of magnetic measurements of such systems. Here, we introduce SuperScreen, 
an open-source Python package for simulating the response of 2D superconductors to trapped flux 
and applied time-independent or quasi-DC magnetic fields for any value of the effective magnetic 
penetration depth, �. Given an applied magnetic field, SuperScreen solves the 2D London equation 
using an efficient matrix inversion method [1,2] to obtain the Meissner currents and magnetic fields 
in and around structures composed of one or more superconducting thin films of arbitrary geometry.
SuperScreen can be used to model screening effects and calculate self- and mutual-inductance in thin 
film superconducting devices.

Program summary
Program title: SuperScreen
CPC Library link to program files: https://doi .org /10 .17632 /bds57s4c83 .1
Developer’s repository link: http://www.github .com /loganbvh /superscreen
Code Ocean capsule: https://codeocean .com /capsule /5305996
Licensing provisions: MIT license
Programming language: Python
Nature of problem: SuperScreen solves for Meissner screening currents in structures composed of 2D 
or thin film superconductors in the presence of an applied magnetic field, pinned vortices, and trapped 
flux.
Solution method: This package solves the 2D London equation for superconducting thin films using a 
matrix inversion method [1,2].
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1. Introduction

SuperScreen is a Python package developed to simulate the 
static magnetic response of structures composed of one or more 
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layers containing superconducting thin films characterized by a 
London penetration depth λ that is large compared to the film 
thickness d. SuperScreen solves the coupled Maxwell’s and Lon-
don’s equations in and around superconducting films in the pres-
ence of inhomogeneous applied magnetic fields, pinned vortices, 
and trapped flux using a matrix inversion method introduced by 
Brandt and Clem [1,2] and subsequently used by Kirtley, et al. to 
model the magnetic response of scanning superconducting quan-
tum interference device (SQUID) sensors [3,4].

There have been many previous numerical studies of mag-
netic screening and inductance extraction in thin film and two-
dimensional (2D) superconducting devices [5–13,1,2,14–18]. How-
ever, few software tools for this task exist and those that are avail-
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able are closed-source, are written in low-level compiled languages 
like C, and/or require the use of specialized file formats or separate 
computer aided design (CAD) software for defining device geome-
tries and model configurations.1 Most of these tools are intended 
for use in the design of superconducting integrated circuits for sin-
gle flux quantum (SFQ) logic and are primarily used for inductance 
extraction [19,20]. SuperScreen is an open-source, user-friendly, 
portable research tool designed to lower the barrier to entry to 
quantitative modeling of 2D superconductors, and to help inter-
pret and inform measurements of superconducting thin films and 
devices.

This introduction to SuperScreen is organized as follows: In 
Section 2 we outline the model and its assumptions, and in Sec-
tion 3 we describe its numerical implementation. In Section 4 we 
provide an overview of the structure of the SuperScreen pack-
age and discuss some important development details. In Section 5
we demonstrate how to perform several types of simulations us-
ing SuperScreen and compare the results to analytical solutions 
and experimental results. Finally, in Section 6 we conclude by dis-
cussing applications, limitations, and possible extensions of the 
package.

2. The model

The goal of SuperScreen is to model the magnetic response 
of a thin superconducting film, or a structure composed of multi-
ple superconducting films (which may or may not lie in the same 
plane), to an applied inhomogeneous out-of-plane magnetic field 
Hz, applied(x, y, z). Given Hz, applied(x, y, z) and information about 
the geometry and magnetic penetration depth of all films in 
a superconducting structure, we aim to calculate the thickness-
integrated current density �J (x, y) at all points inside the films, 
from which one can calculate the vector magnetic field �H(x, y, z)
at all points both inside and outside the films.

A convenient method for solving this problem was introduced 
by Brandt and Clem in Ref. [1], expanded by Brandt in Ref. [2], and 
subsequently used to model the magnetic response of scanning 
SQUID susceptometers [3,4]. In the London model of superconduc-
tivity, the magnetic field �H(�r) and 3D current density �j(�r) in a 
superconductor with London penetration depth λ obey the second 
London equation: �H(�r)/λ2 = −�∇ × �j(�r), where �∇ =

(
∂
∂x , ∂

∂ y , ∂
∂z

)
is the 3D gradient operator. The 2D London model assumes that 
the current density �j is approximately independent of z, such that 
�j(�r) = �j(x, y, z) ≈ �jz0(x, y) for a film lying parallel to the x − y
plane at vertical position z0. Working now with the thickness-
integrated current density �J (x, y) = �jz0(x, y) · d, where d is the 
thickness of the film, the second London equation reduces to

�H(x, y) = −� �∇ × �J (x, y) (1)

where � = λ2/d is the effective penetration depth of the supercon-

ducting film (equal to half the Pearl length [21]) and �∇ =
(

∂
∂x , ∂

∂ y

)
is now the 2D gradient operator.

It is important to note that the assumption �j(x, y, z) ≈ �jz0(x, y)

is valid for only films that are thinner than their London penetra-
tion depth (d � λ, such that � = λ2/d � λ). However the model 
has been applied with some success in structures with λ � d, for 
example by Kirtley, et al. in modeling the magnetic response of 
scanning SQUID susceptometers [3,4]. Aside from this limitation, 
the method described below can be used to model films with any 
effective penetration depth 0 ≤ � < ∞.

1 A brief summary of existing tools can be found in Appendix A.
2

Because the current density has zero divergence inside the su-
perconducting film (∇ · �J = 0) except at small terminals where 
current can be injected, one can express �J in terms of a scalar 
potential g(x, y), called the stream function:

�J (x, y) = −ẑ × �∇g = �∇ × (gẑ) =
(

∂ g

∂ y
,−∂ g

∂x

)
. (2)

The stream function g can be thought of as the local magneti-
zation of the film, or the area density of magnetic dipole sources 
(see Ref. [2] for more interesting properties of the stream func-
tion). We can rewrite Eq. (1), which gives the magnetic field inside 
of a 2D film, in terms of g:

�H(x, y) = −�
[
∇ × �J (x, y)

]

= −�
[ �∇ ×

( �∇ × (gẑ)
)]

= −�
[ �∇( �∇ · (gẑ)) − ∇2(gẑ)

]
= �∇2 g(x, y)ẑ,

(3)

where ∇2 = �∇ · �∇ is the Laplace operator. (The last line follows 
from the fact that �∇ · [g(x, y)ẑ

] = 0.) From Ampere’s Law, the three 
components of the magnetic field �H(�r) at position �r = (x, y, z) due 
to a sheet of current lying in the x − y plane (at vertical position 
z′) with stream function g(x′, y′) are given by:

Hx(�r) =
∫
F

Q x(�r,�r ′)g(x′, y′)d2r′

H y(�r) =
∫
F

Q y(�r,�r ′)g(x′, y′)d2r′

Hz(�r) = Hz,applied(�r) +
∫
F

Q z(�r,�r ′)g(x′, y′)d2r′.

(4)

Here we assume a static out-of-plane applied magnetic field 
�Happlied(�r ′) = Hz, applied(�r ′)ẑ. F is the film area (with g = 0 out-
side of the film), and Q x(�r, �r ′), Q y(�r, �r ′), and Q z(�r, �r ′) are dipole 
kernel functions which give the respective component of the mag-
netic field at position �r = (x, y, z) due to a dipole of unit strength 
at position �r ′ = (x′, y′, z′):

Q x(�r,�r ′) = 3
(x − x′)(z − z′)

4π [(z − z′)2 + ρ2]5/2

Q y(�r,�r ′) = 3
(y − y′)(z − z′)

4π [(z − z′)2 + ρ2]5/2

Q z(�r,�r ′) = 2(z − z′)2 − ρ2

4π [(z − z′)2 + ρ2]5/2
,

(5)

where ρ = √
(x − x′)2 + (y − y′)2. Eq. (4) can also be seen as the 

Biot-Savart Law formulated in terms of the stream function g .
Comparing Eq. (3) and Eq. (4), we have in the plane of the film:

�H(�r) · ẑ = Hz(�r) = �∇2 g(�r)︸ ︷︷ ︸
z−component of the total field

=

Hz,applied(�r)︸ ︷︷ ︸
applied field

+
∫
F

Q z(�r,�r ′)g(�r ′)d2r′

︸ ︷︷ ︸
screening field

, (6)

where now �r and �r ′ are 2D vectors, i.e. z − z′ = 0 since the film 
is in the same plane as itself. From Eq. (6), we arrive at an inte-
gral equation relating the stream function g for points inside the 
superconductor to the applied field Hz, applied:
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Hz,applied(�r) =
−

∫
F

[
Q z(�r,�r ′) − δ(�r −�r ′)�∇2

]
g(�r ′)d2r′, (7)

where δ is the 2D Dirac delta function.
The goal, then, is to solve (invert) Eq. (7) for a given Hz, applied

and film geometry F to obtain g for all points inside the film (with 
the boundary condition g = 0 enforced outside the film). Once g(�r)
is known, the full vector magnetic field �H(�r) can be calculated at 
any point �r from Eqs. (4) and (5).

2.1. Films with holes

In films that have holes (regions of vacuum completely sur-
rounded by superconductor), each hole h can contain a trapped 
flux associated a current Icirc,h circulating around the hole. The 
applied field that would cause such a circulating current is given 
by Eq. (7) if we set g = Icirc,h for all points lying inside hole h:

Hz,eff,h(�r) =
−

∫
hole h

[Q z(�r,�r ′) − δ(�r −�r ′)�∇2]Icirc,h d2r′. (8)

In this case, we modify the left-hand side of Eq. (7) as follows:

Hz,applied(�r) −
∑

holes h

Hz,eff,h(�r) =

−
∫
F

[
Q z(�r,�r ′) − δ(�r −�r ′)�∇2

]
g(�r ′)d2r′.

(9)

The circulating current Icirc, h is defined as the total current 
crossing any curve that connects the interior of the hole h (where 
g = Icirc, h) to the exterior of the film (where g = 0) [11,2].

2.2. The fluxoid

The fluxoid � f
S for a 2D region S with 1D boundary ∂ S is given 

by the sum of magnetic flux through S and the line integral of the 
supercurrent density �J around ∂ S [2,14,22]:

�
f
S =

∫
S

μ0 Hz(�r)d2r

︸ ︷︷ ︸
“flux part”

+
∮
∂ S

μ0��J (�r) · d�r
︸ ︷︷ ︸
“supercurrent part”

. (10)

The fluxoid vanishes for a region S completely contained within 
a superconducting film that contains no holes or vortices, and has 
the same value for any region containing a given hole or collec-
tion of vortices in a superconducting film. This path-independence 
of the fluxoid follows from the static London equation (Eq. (1)) on 
which the present model is based. Fluxoid quantization—the re-
quirement that the fluxoid � f

S = n�0 where n is an integer and 
�0 = h/2e is the magnetic flux quantum—is not automatically en-
forced by Eq. (1) for multiply-connected films, however it can be 
included as an external constraint.

2.3. Vortices

In addition to being trapped in holes (see Section 2.1), flux 
may be trapped in a superconducting film in the form of vortices. 
The presence of vortices trapped in a film at positions �rv modifies 
Eq. (9) as follows:
3

Hz,applied(�r) −
∑

holes h

Hz,eff,h(�r) −
∑

vortices v

�v

μ0
δ(�r −�rv) =

−
∫
F

[
Q z(�r,�r ′) − δ(�r −�r ′)�∇2

]
g(�r ′)d2r′,

(11)

where δ is the 2D Dirac delta function and each vortex v is as-
sociated with a flux �v (typically �v = n�0 = nh/2e, where n is 
an integer, �0 is the magnetic flux quantum, h is the Planck con-
stant, and e is the elementary charge). By solving Eq. (11) to obtain 
g(�r), one can compute the supercurrent density in the film due to 
an applied field and flux trapped in both holes and vortices. For a 
simply-connected region S containing a set of vortices v each as-
sociated with a flux �v , the fluxoid is equal to � f

S = ∑
vortices v �v . 

The numerical solution to Eq. (11) is described at the end of Sec-
tion 3.

2.4. Multi-layer structures

For structures with multiple films lying in different planes or 
layers, with layer 	 lying in the plane z = z	 , the stream functions 
and fields for all layers can be computed self-consistently using the 
following recipe:

1. Calculate the stream function g	(�r) for each layer 	 by solving 
Eq. (11) given an applied field Hz, applied(�r, z	).

2. For each layer 	, calculate the z-component of the field due to 
the currents in all other layers m �= 	 (encoded in the stream 
function gm(�r)) using Eq. (4).

3. Re-solve Eq. (11) taking the new applied field at each layer to 
be the original applied field plus the sum of screening fields 
from all other layers. This is accomplished via the substitution

Hz,applied(�r, z	) → Hz,applied(�r, z	)

+
∑
m �=	

∫
Fm

Q z(�r,�r ′)gm(�r ′)d2r′, (12)

where Fm is surface of all films in layer m and gm is the 
stream function for layer m.

4. Repeat steps 1-3 until the solution converges.

Convergence can be quantified by, for example, calculating the 
total magnetic flux through all films and holes in the model at the 
end of each iteration. In general, the more layers there are in a 
structure the more iterations are required to reach a given level of 
convergence.

3. Numerical implementation

In order to numerically solve Eq. (4) and Eq. (9), we have to dis-
cretize the films, holes, and the vacuum regions surrounding them. 
We use a triangular (Delaunay) mesh, consisting of p points (or 
vertices) which together form t triangles. Below we denote column 
vectors and matrices using bold font. AB denotes matrix multipli-
cation, with (AB)i j = ∑	

k=1 Aik Bkj (	 being the number of columns 
in A and the number of rows in B). Column vectors are treated as 
matrices with 	 rows and 1 column. We denote element-wise mul-
tiplication with a lower dot, (A.B)i j = Aij Bi j , and AT denotes the 
transpose of matrix A.

The discrete version of Eq. (4) is

hz︸︷︷︸
total field

= hz,applied︸ ︷︷ ︸
applied field

+ (Q.wT )g︸ ︷︷ ︸
screening field

hz,i = hz,applied,i +
∑

j

Q i j w j g j,

(13)
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where for clarity we show both the matrix version of Eq. (4) (top 
line) and the equivalent discrete sum version (bottom line).

The p × p kernel matrix Q represents the kernel function 
Q z(�r, �r ′) for all points lying in the plane of the film, and the p × 1
weight vector w, which assigns an effective area to each vertex in 
the mesh, represents the differential element d2r′ . Both Q and w
are solely determined by the geometry of the mesh, so they only 
need to be computed once for a given device. hz , hz, applied, and 
g are all p × 1 vectors, with each row representing the value of 
the quantity at the corresponding vertex in the mesh. The vec-
tor w is equal to the diagonal of the “lumped mass matrix” M: 
wi = Mii = 1

3

∑
t∈N (i) area(t), where N (i) is the set of triangles t

adjacent to vertex i. The kernel matrix Q is given by

Q ij = (δi j − 1)qij + δi j
1

w j

⎛
⎝Ci +

∑
l �=i

qil wl

⎞
⎠ , (14)

where qij = (
4π |�ri −�r j|3

)−1
(which is lim
z→0 Q z(�r, �r ′) cf.

Eq. (5)), and δi j is the Kronecker delta function. The diagonal terms 
involving the p ×1 vector C are meant to work around the fact that 
qii diverge (see Ref. [2] for more details), and C is given by

Ci = 1

4π

∑
p,q=±1

√
[
x − p(xi − x̄)]−2 + [
y − q(yi − ȳ)]−2,

(15)

where 
x = (xmax −xmin)/2 and 
y = (ymax − ymin)/2 are half the 
side lengths of a rectangle bounding the modeled film and (x̄, ȳ)

are the coordinates of the center of the rectangle.
The matrix version of Eq. (9) is

hz,applied −
∑

holes h

hz,eff,h = −(Q.wT − �∇2)g, (16)

where we exclude points in the mesh lying outside of the super-
conducting film but keep points inside holes in the film. ∇2 is 
the Laplace operator, a p × p matrix defined such that ∇2f com-
putes the Laplacian ∇2 f (x, y) of a scalar field f (x, y) defined on 
the mesh vertices (see Appendix B).

Eq. (16) is a matrix equation relating the applied field to the 
stream function inside a superconducting film, which can effi-
ciently be solved (e.g. by Cholesky or LU decomposition) for the 
unknown vector g, the stream function inside the film. Since the 
stream function outside the film and inside holes in the film is al-
ready known, solving Eq. (16) gives us the stream function for the 
full mesh. Defining K = (

Q · wT − �∇2
)−1

, we have

g =

⎧⎪⎨
⎪⎩

−K
(
hz,applied − ∑

holes h hz,eff,h
)

inside the film

Icirc,h inside hole h

0 elsewhere

(17)

If there is a vortex containing flux � j located in a film at 
position �r j indexed as mesh vertex j, then for each position �ri
within that film, we add to the stream function gi the quantity 
μ−1

0 � j Ki j/w j , where Kij is an element of the inverse matrix de-
fined above, and w j is an element of the weight matrix which 
assigns an effective area to the mesh vertex at which the vortex is 
located. This process amounts to numerically inverting Eq. (11) as 
described in Ref. [2].

Once the stream function g is known for the full mesh, the su-
percurrent flowing in the film can be computed from Eq. (2), the 
z-component of the total field in the plane of the film can be com-
puted from Eq. (13), and the full vector magnetic field �H(x, y, z) at 
any point in space can be computed from Eqs. (4) and (5). Multi-
layer structures are solved iteratively as described in Section 2.4.
4

4. Package overview

In this section we give a high-level overview of the Super-
Screen package. Further details can be found in the online docu-
mentation [23]. The specific version of the package corresponding 
to this manuscript is v0.5.0.

4.1. Development details

At the time of writing, SuperScreen requires Python ver-
sion 3.7–3.9. The package is located in a public repository on 
GitHub [24,25], and a suite of unit tests is run automatically via the 
GitHub Actions continuous integration (CI) tool whenever a change 
or proposed change (Pull Request) is made to the main branch of 
the repository. At the time of writing, the test suite is executed 
using Python versions 3.7 through 3.9, and the test coverage is 
> 95%. Any changes to the main branch of the repository also 
trigger an automatic re-build of the online documentation [23]. 
Stable versions of the package are tagged on GitHub and uploaded 
to PyPI, the Python Package Index. The source code and documen-
tation are provided under the MIT License.2

SuperScreen has several important dependencies beyond the 
Python standard library: numpy [26] and scipy [27] for numer-
ics, matplotlib [28] for visualization, pint [29] for handling 
physical units, shapely [30] for creating and manipulating device 
geometries, meshpy [31–33] and optimesh [34] for mesh gener-
ation, and Ray [35,36] for parallel processing with shared memory 
(see Appendix E).

4.2. Devices

Information about the geometry and penetration depth of a 
superconducting structure is described by an instance of the 
superscreen.Device class. A Device is made up of one or 
more superconducting layers, each represented by an instance of 
superscreen.Layer. Each layer sits in a specified plane paral-
lel to the x − y plane and has its own effective penetration depth 
�. Alternatively, the effective penetration depth � can be defined 
in terms of a layer’s London penetration depth λ and its thickness 
d: � = λ2/d.

Each layer can contain one or more superconducting films
which may have one or more holes in them. Films and holes are 
represented by instances of the superscreen.Polygon class. 
All polygons in a device must be simply-connected; a hole in 
a film is modeled as one Polygon instance whose coordinates 
all lie within the Polygon representing the film. Polygons
can be constructed and combined using set-theoretic opera-
tions. Table 1 shows the four methods available for combining 
a supercreen.Polygon instance polygonA, whose vertices 
lie in set A, with a polygon polygonB, whose vertices lie in 
set B . Note that polygonB can be a superscreen.Polygon, 
an n × 2 numpy array of vertex coordinates, or a LineString, 
LinearRing, or Polygon from the shapely package [30].

In addition to superconducting films and holes, one may de-
fine “abstract regions,” which are polygons that do not necessarily 
correspond to a physical feature in the structure, but will still 
be meshed. Abstract regions can be used to define a “bound-
ing box” around a structure to be modeled, or to locally increase 
the density of the computational mesh in a given region. The 
superscreen.geometry module provides functions for gener-
ating the underlying polygon vertices for simple shapes (ellipses 
and rectangles), which can be combined as described above to cre-
ate more complicated geometries.

2 https://opensource .org /licenses /MIT.

https://opensource.org/licenses/MIT
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Table 1
Methods for combining superscreen.Polygon objects, along with their corresponding set-theoretic and 
boolean logic operations.

SuperScreen Set-theoretic Boolean

polygonA.union(polygonB) A ∪ B OR
polygonA.intersection(polygonB) A ∩ B AND
polygonA.difference(polygonB) A \ B AND NOT
polygonA.difference(polygonB, symmetric=True) (A \ B) ∪ (B \ A) XOR

Fig. 1. The output of Code Block 1: Meissner screening of a uniform 1 mT out-of-plane field by a ring with inner diameter 1 μm, outer diameter 3 μm, and effective penetration 
depth � = 1 μm, interrupted by a slit of width 0.25 μm. (a) Plot of the boundary of the ring (blue), circular bounding box (orange), and the computational mesh (gray), 
generated with Device.plot(). (b) The current density �J in the ring, generated with Solution.plot_currents(). (c) The z-component of the magnetic field μ0 Hz

evaluated at the plane of the ring, generated with Solution.plot_fields(). (d) The z-component of the magnetic field evaluated z = 0.5 μm above the ring (generated 
using Solution.plot_field_at_positions()). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Once the layers, films, holes, and abstract regions have been 
defined, one can generate the computational mesh by calling 
Device.make_mesh(). The region that is meshed is defined by 
the convex hull of the union of all polygons in the device. Mesh 
generation is a two step process. First, an initial Delaunay mesh is 
created using meshpy [31], which is a Python interface to Trian-
gle [33,32], a fast compiled 2D mesh generation tool. Second (and 
optionally), the mesh is further optimized using optimesh [34]. 
The goal of the mesh optimization step is to improve the “quality” 
of each triangular element in the mesh, where quality measures 
how close a triangle is to equilateral (quality ≤ 1, with equality for 
equilateral triangles). In practice, the more optimesh steps are 
performed, the more uniform in size and spatial density the tri-
angles in the mesh become. The local density of triangles in the 
mesh is determined by the density of vertices in the device’s poly-
gons and the total number of triangles. Regions where there are 
many polygon vertices will be meshed more densely than regions 
with few polygon vertices. If no optimesh optimization is per-
formed, then every polygon vertex is guaranteed to be a mesh 
vertex. See Code Block 1 for a demonstration of the process of cre-
ating a Device, and Fig. 1(a) to view the resulting geometry and 
mesh. After the mesh has been generated, the geometry-dependent 
matrices and vectors described in Section 3 are computed and one 
can begin solving models.

4.3. Solvers

A SuperScreen model consists of 1) a Device with a mesh, 
2) a function or Parameter that defines the applied magnetic 
field as a function of position Hz, applied(x, y, z), 3) a value for 
the current circulating around each hole in the device due to 
trapped flux, and 4) a collection of vortices v located at posi-
tions �rv and carrying flux �v . These items serve as the inputs to
SuperScreen’s main solver function, superscreen.solve(), 
which implements the calculation outlined in Section 3. When 
simulating a device with more than one layer, one can spec-
ify the number of times to implement the iterative calculation 
described in Section 2.4 in order to solve for the response of 
all layers self-consistently. One can also skip the iterative por-
tion of the calculation entirely and only solve for the response 
of each layer to the applied field, assuming no interaction be-
tween layers. The device.solve_dtype attribute determines 
the numpy floating point data type used by solve(). The de-
5

fault data type is float64 (64-bit double-precision float, equiv-
alent to Python’s float type), but one can, for instance, set 
device.solve_dtype = "float32" to use 32-bit single-
precision floats in order to save memory.

The output of superscreen.solve() is a list of
superscreen.Solution objects, with a length of 1 plus the 
number of iterations used for the iterative portion of the calcu-
lation. A Solution encapsulates all of the information about a 
solved model: the Device, applied field, circulating currents, vor-
tices, and calculated stream functions and magnetic fields for all 
layers in the device. A Solution also has methods for processing 
the simulation results, including:

• Solution.grid_data(): Interpolates the calculated
stream functions g(x, y), magnetic fields μ0 Hz(x, y), or cur-
rent densities �J (x, y), for each layer from the triangular mesh 
to a rectangular grid.

• Solution.field_at_position(): Calculates the vector 
magnetic field at any point(s) in space due the applied field 
and the currents flowing the in the device using Eqs. (4) and 
(5).

• Solution.interp_current_density(): Evaluates the 
2D current density �J (x, y) in each layer at arbitrary (x, y) co-
ordinates via interpolation.

• Solution.polygon_flux(): Calculates the total flux
through each polygon in the device.

• Solution.polygon_fluxoid(): Calculates the fluxoid 
for a specified polygonal region in the device. See Section 5.1
for more details.

Solutions also have several visualization methods built in (see 
Code Block 1, Fig. 1, and Section 4.4).

One may wish to solve many models involving the same device 
while varying other aspects of the model, for example sweeping 
the applied field, circulating currents, vortex properties, or some 
parameter of one or more layers in the device. Fortunately, the 
mesh, Laplace operator, kernel matrix, etc. (described in Section 3) 
depend only on the geometry of the device parallel to the x − y
plane. This means that the same mesh and matrices can be re-
used for models with different applied fields, circulating currents, 
vortex properties, layer z-positions, and penetration depths.

The superscreen.solve_many() function manages the 
setup and execution of such a sweep. One can provide a se-
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import superscreen as sc
from superscreen.geometry import circle, box

# Define the device geometry.
length_units = "um"
ro = 3 # outer radius
ri = 1 # inner radius
slit_width = 0.25
Lambda = 1 # effective penetration depth
# circle() and box() generate arrays of polygon (x, y) coordinates.
ring = circle(ro)
hole = circle(ri)
slit = box(slit_width, 1.5 * (ro - ri), center=(0, -(ro + ri) / 2))
# Define the Polygon representing the superconductor.
layer = sc.Layer("base", Lambda=Lambda)
film = sc.Polygon.from_difference(

[ring, slit, hole], name="ring_with_slit", layer="base"
)
bounding_box = sc.Polygon("bounding_box", layer="base", points=circle(1.2 * ro))
# Create a Device and generate and plot the computational mesh.
device = sc.Device(

film.name,
layers=[layer],
films=[film],
abstract_regions=[bounding_box],
length_units=length_units,

)
device.make_mesh(min_points=3500)
device.plot(mesh=True)
# Calculate the device's response to a uniform applied field.
applied_field = sc.sources.ConstantField(10)
solution = sc.solve(device, applied_field=applied_field, field_units="mT")[-1]
# Visualize the solution.
# Plot the current density evaluated at each layer in the Device.
solution.plot_currents()
# Plot the magnetic field evaluated at each layer in the Device.
solution.plot_fields()
# Plot the field evaluated at any points in space.
solution.plot_field_at_positions(device.points, zs=0.5)

Code Block 1: The typical workflow for a SuperScreen simulation: 1) Define the device geometry and materials properties, 2) generate 
the computational mesh, 3) solve the model for a given applied field and/or trapped flux, and 4) visualize the results.
quence of Parameter objects defining different applied fields 
and/or a sequence of circulating current values over which to 
sweep and/or a “layer updater” function that modifies each layer 
in the device according to some set of keyword arguments, 
which can also be swept. The latter option can be used to 
sweep layer heights or penetration depths. Given these inputs, 
superscreen.solve_many() will generate and solve all of 
the corresponding models. The models can either be solved in 
series in a single Python process (the default), or in parallel in 
multiple Python processes running across multiple CPUs, or even 
across multiple nodes in a cluster (see Appendix E).

4.4. Visualization

SuperScreen offers several functions for visualizing the 
results of simulations (which are also aliased as methods on 
superscreen.Solution):

• superscreen.plot_streams(): Given a Solution,
plots the stream function g(x, y) for one or more layers in 
the device.

• superscreen.plot_currents(): Given a Solution, 
plots the current density �J (x, y) for one or more layers in 
the device.
6

• superscreen.plot_fields(): Given a Solution, plots 
the total field Hz(x, y) or the screening field Hz(x, y) −
Hz, applied(x, y) for one or more layers in the device.

• superscreen.plot_field_at_positions(): Given a 
Solution, plots the total field �H(x, y, z) or Hz(x, y, z) at an 
arbitrary set of positions (x, y, z).

See Code Block 1 and Fig. 1 for an example of the usage and 
output of plot_fields() and plot_currents().

4.5. Comparison & persistence

Parameters, Layers, Polygons, Devices, and
Solutions all implement the equality operator, ==. Two
Parameters are considered equal if the Python bytecode of their 
underlying functions is the same and their keyword arguments are 
the same. Two Layers are equal if their name, penetration depth, 
thickness, and vertical position are all equal. Two Polygons are 
equal if they are in the same layer and their name and polygon 
vertices are equal. Two Devices are equal if their name, layers, 
films, holes, and abstract regions are all equal. Two Solutions
are equal if their device, applied field, circulating currents, list of 
trapped vortices, timestamp (time at which the solution was cre-
ated), and all stream function and magnetic field arrays are equal. 
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Two Solutions created at different times can also be compared 
using the solution.equals() method.

Instances of superscreen.Device and superscreen.
Solution can be saved to and loaded from disk using their 
respective to_file() and from_file() methods, making it 
straightforward to store and share models and simulation results. 
Layers, Polygons, and all metadata are serialized to JSON, 
a widely-used, human-readable plain text format. Functions and 
Parameters, such as those that compute the applied field or 
penetration depth, are serialized in binary form using the dill
package [37]. Numpy arrays, such as the mesh itself and the com-
puted stream functions and fields, are saved in the numpy npz
file format. A list of Solutions, such as that returned by 
superscreen.solve() can be saved/loaded all at once using 
save_solutions() and load_solutions().

5. Examples

5.1. Calculating the fluxoid

SuperScreen allows one to calculate the fluxoid � f
S for any 

polygonal region S whose boundary ∂ S lies completely within a 
superconducting film using the method Solution.polygon_
fluxoid() (see Section 2.2, Eq. (10)). The “flux part”∫

S μ0 Hz(�r) d2r is calculated using Solution.polygon_flux(), 
which computes the flux through a polygon representing a region 
S as �S = ∑

i∈S μ0 Hz,i wi , where Hz,i is the magnetic field at ver-
tex i (recall that wi assigns an effective area to mesh vertex i). 
The “supercurrent part” 

∮
S μ0��J (�r) · d�r is calculated by evaluat-

ing the vector current density �J at each point in the path ∂ S
using Solution.interp_current_density(), then com-
puting the line integral along the path using the trapezoid rule. 
The sum of these two terms gives the fluxoid � f

S .
While the 2D London model doesn’t “know” about fluxoid 

quantization, in the sense that the quantization condition � f
S =

n�0 is not automatically satisfied by solutions to Eq. (1) for 
multiply-connected films, we can nevertheless calculate current 
and field distributions for different fluxoid states in multiply-
connected superconductors by adjusting the currents circulating 
around each hole to realize a prescribed set of fluxoid values. For 
a structure with Nh holes, we can specify Nh fluxoids � f

h and find 
the circulating currents Ih by minimizing the deviation of each 
fluxoid from its desired value. This calculation is implemented in 
the superscreen.find_fluxoid_solution() function. For 
Nh = 1, it is treated as a root-finding problem, which can be solved 
with typically only three calls to superscreen.solve(). For 
Nh > 1, it is a least-squares minimization problem with Nh free 
parameters. Code Block 2 demonstrates how to model a device 
with one or more holes, each in the n = 0 fluxoid state, sub-
ject to a uniform applied field, and Fig. 2 shows the field and 
current distributions for a rectangular superconducting film with 
� = 0.25 μm, which has one rectangular and one elliptical hole. 
The least-squares minimization for the model shown in Fig. 2, with 
Nh = 2, required 18 total calls to superscreen.solve(). It is 
important to note that while SuperScreen can calculate the field 
and current distributions for a given fluxoid state, the model does 
not capture transitions between fluxoid states.

5.2. Pearl vortices in thin films

Vortices trapped in 2D superconductors (d � λ, where d is the 
film thickness and λ is the London penetration depth), i.e. “Pearl 
vortices,” are associated with different current and magnetic field 
distributions than Abrikosov vortices trapped in bulk type-II super-
conductors [21]. The 2D Fourier transform H̃z(�k, z) of the out-of-
7
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import superscreen as sc
# Assume that we have already created a
# superscreen.Device with one or more
# holes, and generated the mesh.
# Specify the desired fluxoid for each
# hole in the device:
fluxoids = {

hole_name: 0
for hole_name in device.holes

}
applied_field = sc.sources.ConstantField(1)
field_units = "mT"

result = sc.find_fluxoid_solution(
device=device,
fluxoids=fluxoids,
applied_field=applied_field,
field_units=field_units,

)
solution, opt_result = result

Code Block 2: Calculating the field and current distributions for 
fluxoid states in a multiply-connected superconducting film. Given 
a Device with Nh ≥ 1 holes and a desired fluxoid �

f
h for 

each hole, superscreen.find_fluxoid_solution() op-
timizes the current Ih circulating around each hole to real-
ize the desired fluxoid state. The function returns a tuple
of length 2, the first element being the final optimized 
superscreen.Solution and the second element being an in-
stance of either scipy.optimize.RootResults (if Nh = 1) or 
scipy.optimize.OptimizeResult (if Nh > 1), which con-
tains information about the optimization that was performed. See 
Fig. 2 for an example of the results for a film with two holes, both 
in the n = 0 fluxoid state.

Fig. 2. (a) Magnetic field and (b) current density distributions generated by Code 
Block 2 for a rectangular superconducting film with � = 0.25 μm, which has one 
rectangular and one elliptical hole. The film is subject to a uniform applied out-
of-plane field of 1 mT, and both holes are set to be in the n = 0 fluxoid (i.e. 
Meissner) state. The resulting circulating currents are Irectangle = −1.071 mA and 
Iellipse = −1.589 mA, and the residual fluxoid for each hole is smaller than 10−7 �0. 
These results were computed using a mesh with approximately 5,000 vertices and 
10,000 triangles.
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Fig. 3. Vortex field profiles calculated using SuperScreen agree with the analytical solution (Eq. (18)) to within a few percent. Here, we model a vortex trapped at the 
center of a square superconducting film lying in the x − y plane with side length 20 μm as a function of the film’s effective penetration depth, �. (a) Cross section along 
the x-axis of the out-of-plane magnetic field μ0 Hz from the vortex, evaluated at a vertical distance z = 1 μm above the film. The left inset shows the current density in 
the plane for film for � = 2 μm, and the right inset shows the corresponding magnetic field evaluated at z = 1 μm, with a dashed white line indicating the cross-section 
axis. (b) Percentage difference between the μ0 Hz calculated with SuperScreen and the Fourier transform method for the x-axis cut shown in (a). (c) Cross-section along 
the z-axis of μ0 Hz directly above the center of the vortex (logarithmic y axis scale). (d) Percentage difference between the μ0 Hz calculated with SuperScreen and 
the Fourier transform method for the z-axis cut shown in (c). In (a) and (c), the results from SuperScreen are shown as open circles and the results from the Fourier 
transform method are shown as solid lines. (e) The fluxoid � f

S for a circular region in the film with radius r = 1 μm centered on the vortex core. As � increases, so to does 
the supercurrent contribution to the fluxoid. (f) Error in the total simulated fluxoid relative to �0: error = (� f

S (�) − �0)/�0.
plane component of the magnetic field Hz(�r, z) from a Pearl vortex 
located at the origin x = y = z = 0 is given by

H̃z(�k, z) = F{Hz(�r, z)} = 1

μ0

�0e−|�k|z

1 + 2�|�k| , (18)

where F{·} is the 2D Fourier transform, �k = (kx, ky) are in-plane 
spatial frequencies, z is the out-of-plane position at which the 
field is evaluated, and 2� = 2λ2/d is the Pearl length [21,38]. 
The real-space magnetic field distribution near a Pearl vortex can 
be calculated by taking the inverse Fourier transform of Eq. (18): 
Hz(�r, z) =F−1{H̃z(�k, z)}.

To include vortices in a SuperScreen model, one can sim-
ply input a list of superscreen.Vortex objects when calling 
superscreen.solve(). A Vortex object specifies the x, y po-
sition for the vortex core, the name of the superconducting layer 
in which the vortex is pinned, and the number of flux quanta �0
contained in the vortex (which is 1 by default). The field distribu-
tions generated by SuperScreen in the presence of vortices as 
described in Sections 2.3 and 3 agree to within a few percent with 
the distributions obtained using this Fourier transform method, as 
demonstrated in Fig. 3. Fig. 3(e) shows the fluxoid for a circular 
region S with radius r = 1 μm enclosing a Pearl vortex trapped in 
a film as a function of the film’s effective penetration depth, �. 
When � = 0, the screening currents decay very quickly away from 
the center of the vortex, so the “supercurrent part” of the � f

S van-
ishes. With increasing �, the “supercurrent part” accounts for an 
increasing fraction of the total fluxoid. See Ref. [2] for a method 
to compute the self-energy and interaction energies of vortices in 
thin films.

5.3. Calculating inductance

As shown in Ref. [2], the mutual inductance Mij between holes 
i and j in a superconducting structure is given by
8

Fig. 4. Self-inductance L of a circular ring with inner radius a and outer radius b
(see inset), as a function of the ratio a/b and the ring’s effective penetration depth 
�. Filled circles indicate results from SuperScreen, solid lines show numerical 
results from Figure 2 of Ref. [1], blue squares and diamonds show numerical re-
sults from Figure 1 of Ref. [9], and the dashed line indicates the analytical solution, 
L = 2μ0a, for � = 0 in the limit a/b → 0 [7,13]. The SuperScreen results were 
generated using a mesh with approximately 4,000 vertices and 8,000 triangles.

Mij = �
f
Si

I j
, (19)

where �
f
Si

is the fluxoid for a region Si containing the hole 
i, and I j is the current circulating around hole j. The mutual 
inductance values for a set of holes form a mutual inductance 
matrix. The diagonals of the mutual inductance matrix are the 
hole self-inductances (Mii = Li , the self-inductance of hole i), and 
the matrix is symmetric (Mij = M ji ) due to the reciprocity theo-
rem. In this context, the flux and supercurrent parts of the flux-
oid correspond to the geometric and kinetic inductance respec-
tively [1]. If the penetration depth of the film containing hole 
i is � = 0, then no field penetrates the film, the fluxoid �

f

Si
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Fig. 5. Calculating SQUID susceptometer mutual inductance, defined as the fluxoid induced in the SQUID pickup loop per unit current flowing in the field coil: MPL−FC =
�

f
PL/IFC. Top row (a): Schematics of SuperScreen models for the field coil and pickup loop region of four sizes of scanning SQUID susceptometer (generated using 

Device.draw()) with pickup loop inner radii ranging from 0.1 μm (“Small”) to 3 μm (“X-Large”). Middle row (b): Simulated magnetic field μ0 Hz evaluated at the plane 
of layer W1, which contains the pickup loop, normalized by the current IFC flowing in the field coil (which is located in layer BE). Bottom row (c): Convergence of the four 
models, defined as the fractional change in mutual inductance between subsequent iterations i. For all four models, the simulated mutual inductance, Msim, falls within the 
range of mutual inductance values measured in real devices, Mexp, which were reported in Table 1 of Ref. [3]. The mutual inductance values are shown in units of �0/A, 
where 1 �0/A ≈ 2.068 × 10−3 pH. The meshes for all four models consisted of approximately 6,000 vertices and 12,000 triangles. The two smaller models converge more 
quickly than the two larger models for reasons discussed in Appendix D. Note that for the “X-Large” model, we set the thicknesses of layers I1 and I2 both to 400 nm 
(instead of the nominal values of 150 nm and 130 nm respectively), to ensure convergence (see Appendix D and Fig. D.7).
is equal to the flux through hole i, and the total inductance is 
equal to the geometric inductance. For a device with Nh holes, the 
Nh × Nh mutual inductance matrix M can be computed using the 
Device.mutual_inductance_matrix() method. For exam-
ple, the mutual inductance matrix for the device shown in Fig. 2
is:

M =
(

10.319 −1.536
−1.527 7.130

)
pH,

where the matrix is indexed as(
ellipse

rectangle

)
,

and the “fractional asymmetry” of M is

|M01 − M10|/min(|M01|, |M10|) ≈ 0.6%.

The self-inductance L of a 2D circular ring with inner radius a
and outer radius b (see inset of Fig. 4) has been used as an infor-
mal benchmark for superconducting inductance calculations. For a 
ring with effective penetration depth � = 0, it has been shown 
analytically that L → 2μ0a in the limit a/b → 0 [7,13]. Khapaev 
calculated the inductance for � = 0 as a function of a/b [9], and 
Brandt and Clem calculated the inductance as a function of both 
� and a/b [1]. Fig. 4 shows a comparison between these previ-
ous numerical results and the results from SuperScreen. Note 
that the models used by Brandt and Clem (solid lines) and by 
the LCR2D software (blue diamonds) require a circularly symmetric 
superconducting film, whereas SuperScreen (filled circles) and 
3D-MLSI [9] (blue squares) support arbitrary 2D geometry.
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5.4. Application: scanning SQUID susceptometry

As an example application, we consider scanning SQUID mi-
croscopy, a technique in which a superconducting sensor is used 
to study superconducting or magnetic samples on micron length 
scales [3]. In scanning SQUID susceptometry, the magnetic suscep-
tibility of a sample is measured by bringing the sample close to 
a pair of superconducting loops [39–41]. The first loop, called the 
“pickup loop” (PL) is attached to a SQUID circuit that sensitively 
measures the magnetic flux threading the loop. The second loop, 
called the “field coil” (FC), carries a known current IFC and applies 
a known magnetic field to both the pickup loop and the sample. 
A superconducting sample will screen the magnetic field from the 
field coil, modifying the amount of flux threading the pickup loop 
and reducing the mutual inductance MPL−FC. The magnitude of 
this reduction in MPL−FC is a measure of the sample’s penetration 
depth and therefore its superfluid density.

Fig. 5(a) shows SuperScreen Device models of the field coil 
and pickup loop region of four types of real SQUID susceptometers, 
with geometry taken from the layout artwork (GDS) files. In addi-
tion to the field coil and pickup loop, there are superconducting 
shields that limit the amount of magnetic flux that can penetrate 
the leads connecting the loops to the rest of the circuit (the rest 
of the circuit is not modeled). There are three relevant layers of 
superconducting films: the base electrode (BE), which is furthest 
from the sample contains the field coil; the first wiring layer (W1), 
which contains the pickup loop and a shield covering the field 
coil leads; and the second wiring layer (W2), which is closest to 
the sample and contains a shield covering the pickup loop leads. 
There are two insulating layers: I1, which separates BE and W1, 
and I2, which separates W1 and W2. For the superconducting lay-
ers, which are made of Nb, we take the London penetration depth 
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Fig. 6. Simulation of a scanning SQUID susceptometry measurement. (a) Geometry of the Device representing the “sensor” SQUID. (b) Geometry of the Device represent-
ing the “sample” SQUID. (c) Susceptibility of the sample SQUID measured at a temperature of 4.0 K. (d) Simulated susceptibility, calculated using the method described in 
Section 5.4. The pickup loop of the sample, which in reality is connected to a SQUID circuit that has a non-linear magnetic response, is modeled as a continuous supercon-
ducting loop in the zero-fluxoid (i.e. Meissner) state. The susceptibility signal is defined as MPL-FC − MPL-FC, no sample , where MPL-FC, no sample ≈ 163 �0/A (see Fig. 5(a), second 
column). The scale bar in (a) applies to all four panels.
to be λ = 80 nm, and the layer thicknesses correspond to the real 
device design (see Table 1 of Ref. [4] and Figure 8 of Ref. [3]). It 
is important to note that because λ < d for all three layers, the 
susceptometers are not in the 2D limit in which the model de-
scribed in Section 2 is technically valid. Nevertheless, as shown 
in Fig. 5, the field coil - pickup loop mutual inductances, Msim, 
computed by SuperScreen lie within the range of mutual in-
ductances measured in real devices, Mexp (taken from Table 1 of 
Ref. [3]), for all four sizes of susceptometer, indicating that vari-
ation in current density along the thickness of each film is not 
critical in determining the mutual inductance in this case. Fig. 5(c) 
shows the convergence of MPL−FC as a function of solver iteration 
(see Section 2.4).

Having established the value of the field coil - pickup loop mu-
tual inductance in the absence of a sample, MPL-FC, no sample, we can 
simulate a scanning SQUID susceptometry measurement by calcu-
lating MPL−FC in the presence of a superconducting sample as a 
function of the relative position of the pickup loop and the sample, 
(xs, ys). For example, in Fig. 6 we simulate a SQUID susceptometry 
measurement of a “Large” susceptometer (the sample) measured 
with a “Medium” suceptometer (the sensor). Given a Device rep-
resenting the sensor and a Device representing the sample, this 
calculation is performed in three steps:

1. Simulate the sensor with some known current IFC circulat-
ing in the field coil to obtain field_coil_solution and 
MPL-FC, no sample.

2. For a given relative position (xs, ys) between the sensor and 
sample, simulate the sample with an applied field given by 
field_coil_solution.field_at_position() to ob-
tain sample_solution.

3. Simulate the sensor again, this time with the applied field 
given by sample_solution.field_at_position(),

evaluate the fluxoid �
f
PL for the hole representing the sen-

sor’s pickup loop, and calculate the mutual inductance:

MPL−FC(xs, ys) = �
f
PL/IFC.

These three steps are repeated for every desired (xs, ys) to build 
up a susceptometry image. The susceptibility signal is reported as 
MPL-FC(xs, ys) − MPL-FC, no sample, where values that are more neg-
ative indicate a stronger diamagnetic response from the sample. 
Note that in principle it is possible to combine the sensor and 
sample into a single Device with 6 superconducting layers, how-
ever this is impractical because it would require generating a new 
mesh for each (xs, ys) and, as discussed in detail in Appendix D, 
the problem scales unfavorably with the number of layers in a de-
vice and with the total lateral extent of a device.
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6. Conclusion

The ability to model and visualize screening effects in 2D su-
perconductors and devices constructed from superconducting thin 
films can help to build intuition about these systems, aid in inter-
pretation of measurement results, and enable optimization of mea-
surement and device design. SuperScreen is an open-source, 
user-friendly, portable, and efficient tool that solves this problem. 
Applications of the package include calculating self- and mutual-
inductance in planar and multi-planar superconducting circuits, 
and modeling the magnetic interaction between superconducting 
samples and superconducting sensors such as scanning SQUID sus-
ceptometers [3].

There are several important limitations to the applicability of
SuperScreen and the matrix inversion method on which it is 
based [1,2]. First, strictly speaking all superconducting films should 
be in the 2D limit, with London penetration depth λ large com-
pared to the film thickness d, such that the current density is 
approximately constant along the thickness of the film. There are 
cases where the model reproduces experimental results despite vi-
olation of this condition (e.g. the calculations and in Refs. [3,4]
and Section 5.4), but care must be taking in interpreting results in 
these cases. Second, the model assumes that all superconducting 
films behave linearly and without dissipation, and that the applied 
magnetic field and current density are well below the critical field 
and critical current density of all films in a device. Third, Super-
Screen does not support “terminal currents,” i.e. currents flowing 
in one terminal of a device and out another terminal. This means 
that inductance calculations are limited to structures with holes, 
in which all applied currents are circulating currents associated 
with trapped flux. Terminal currents can, however, be included 
in stream function-based models by setting appropriate boundary 
conditions [9–12,15]. An extension to the model described above 
that treats the magnetic response of a superconducting ring in-
terrupted by two Josephson junctions (i.e. a SQUID) with trapped 
vortices and terminal currents is given in Ref. [14]. Finally, care 
should be taken to ensure that for a given model the mesh is of 
sufficient density that, to within the desired precision, the results 
of simulations do not depend on mesh size (see Appendix D).

Potential improvements to SuperScreen include: support for 
terminal currents as discussed above, automated determination of 
solution convergence for models with multiple layers, more so-
phisticated mesh generation (e.g. automated local mesh refinement 
based on device geometry or adaptive mesh refinement based on 
solution convergence), integration with standard integrated circuit 
layout software or file formats, and further numerical optimization, 
including GPU acceleration.
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Appendix A. Existing tools

Here, we briefly describe existing software tools for modeling 
the magnetic response of superconducting devices, most of which 
are specifically designed for inductance extraction for supercon-
ducting integrated circuits. FastHenry, a widely-used 3D (normal 
metal) inductance extraction tool from MIT [42], has been ex-
tended to support superconducting elements [43,44]. This modi-
fied version of FastHenry has been used for inductance extraction 
in the commercial software InductEx [16–18]. While FastHenry 
is open-source, it is written in C and must be compiled for a 
specific computer architecture and operating system. FastHenry 
executables compiled for several common operating systems are 
available as part of the open-source XicTools superconducting in-
tegrated circuit design suite from Whiteley Research, Inc [43,44]. A 
2D London-Maxwell approach based on a scalar stream function, 
much like the approach used by SuperScreen [1,2], forms the 
basis of the 3D-MLSI software package [9–12], which is also writ-
ten in C and is not open-source. For a thorough historical overview 
and comparison of inductance extraction tools, see Ref. [19]. For 
a more recent overview of superconducting inductance extraction 
tools see Ref. [20], particularly references [8–25] therein.

SuperScreen is not intended primarily as an inductance ex-
traction tool and cannot be used to extract the inductance of su-
perconducting transmission lines (a common superconducting cir-
cuit design task [19,45,20]) due to the lack of support for “terminal 
currents.” Nevertheless, it is instructive to compare SuperScreen
to a state of the art commercial inductance extraction tool, Induc-
tEx [16–18], on a problem that can be solved using both tools. 
One such problem, provided as an example in the InductEx user 
manual, is the self-inductance L of a square washer with outer di-
mension 30 μm, inner dimension 10 μm, London penetration depth 
λ = 0.24 μm, and film thickness d = 0.20 μm, for which the Induc-
tEx solution reports a “design” value of L = 20 pH and an “extract-
ed” value of L = 20.0956 pH [46]. Code Block 3 demonstrates how 
to solve this problem using SuperScreen. The inductance ex-
tracted using SuperScreen, L = 19.91 pH, is within 1% of the 
inductance extracted using InductEx.

Appendix B. Mesh Laplace and gradient operators

The definitions of the Laplace operator ∇2 (also called the 
Laplace-Beltrami operator) and the gradient operator �∇ =
(∇x, ∇y)

T deserve special attention, as these two operators reduce 
11
import superscreen as sc
from superscreen.geometry import box

layer = sc.Layer(
"base",
london_lambda=0.24,
thickness=0.2,

)
film = sc.Polygon(

"washer",
layer="base",
points=box(30, points_per_side=50),

)
hole = sc.Polygon(

"hole",
layer="base",
points=box(10, points_per_side=250),

)
device = sc.Device(

"washer",
layers=[layer],
films=[film],
holes=[hole],
length_units="um",

)
device.make_mesh(min_points=3000)
# See Equation 19.
M = device.mutual_inductance_matrix()
L = M[0, 0].to("pH")
print(f"Inductance = {L:~.4fP}")
# Output: Inductance = 19.9100 pH

Code Block 3: SuperScreen script to calculate the self-
inductance of a square washer with outer dimension 30 μm, inner 
dimension 10 μm, London penetration depth λ = 0.24 μm, and film 
thickness d = 0.20 μm. The extracted inductance L = 19.91 pH dif-
fers from the InductEx “design” and “extracted” values by -0.45% 
and -0.92% respectively [46].

the problem of solving a partial differential equation to the prob-
lem of solving a matrix equation [47]. Given a mesh consisting of 
p vertices and t triangles, and a scalar field f (x, y) represented by 
a p × 1 vector f containing the values of the field at the mesh ver-
tices, the goal is to construct matrices ∇2 and �∇ = (∇x, ∇y)

T such 
that the matrix products ∇2f and �∇f approximate the Laplacian (

∂2 f
∂x2 + ∂2 f

∂ y2

)
and the gradient 

(
∂ f
∂x ,

∂ f
∂ y

)
of f (x, y) at the mesh 

vertices.
As described in Ref. [48], the Laplace operator ∇2 for a mesh 

is defined in terms of two matrices, the mass matrix M and the 
weak Laplacian matrix L: ∇2 = M−1L. In a 2D mesh, the mass ma-
trix M gives an effective area to each vertex in the mesh. Here 
we use a “lumped” mass matrix, which is diagonal with elements 
Mii = 1

3

∑
t∈N (i) area(t), where N (i) is the set of triangles t adja-

cent to vertex i. The weak Laplacian matrix L is defined in terms 
of a symmetric weight matrix W, which assigns a weight to every 
edge in the mesh. W may be defined in a number of ways:

1. Uniform weighting: In this case, W is simply the adjacency 
matrix for the mesh vertices:

W ij =

⎧⎪⎨
⎪⎩

0 if i = j

1 if i is adjacent to j

0 otherwise
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2. Inverse-Euclidean weighting: Each edge is weighted by the in-
verse of its length: |�ri −�r j |−1, where �ri is the position of vertex 
i.

W ij =

⎧⎪⎨
⎪⎩

0 if i = j

|�ri −�r j|−1 if i is adjacent to j

0 otherwise

3. Half-cotangent weighting: Each edge is weighted by the half 
the sum of the cotangents of the two angles opposite to it.

W ij =

⎧⎪⎨
⎪⎩

0 if i = j
1
2

(
cotαi j + cotβi j

)
if i is adjacent to j

0 otherwise

By default, SuperScreen uses half-cotangent weighting. The 
Laplacian matrix L is defined in terms of the weight matrix W: 
Li j = W ij − δi j

∑
	 W i	 . Finally, the Laplace operator is given by 

∇2 = M−1L.
We construct the two p × p gradient matrices ∇x and ∇y , using 

the “average gradient on a star” (or AGS) approach [49]. Briefly, we 
first construct two t × p matrices, �∇t = (∇t,x, ∇t,y)

T using “per-cell 
linear estimation” (or PCE) [49], where ∇t,xf maps the field values 
at the vertices f to an estimate of the x-component of the gradient 
at the triangle centroids (centers-of-mass). The matrices ∇x and ∇y
are then computed by, for each vertex i, taking the weighted aver-
age of ∇t,x and ∇t,y over adjacent triangles t ∈N (i), with weights 
given by the angle between the two sides of the triangle adjacent 
to the vertex. The resulting �∇ = (∇x, ∇y)

T is a 2 × p × p stack of 
matrices defined such that �∇f produces a 2 × p matrix represent-
ing the gradient of f (x, y) at the mesh vertices, with the first and 
second rows of �∇f containing the x and y components of the gra-
dient, respectively.

Appendix C. Spatially inhomogeneous λ

The London equation (Equation (1)) is valid only under the as-
sumption that the London penetration depth λ, a proxy for the 
superfluid density, is constant as a function of position [22]. In 
cases where the superfluid density varies as a function of position, 
Ginzburg-Landau theory provides a more accurate description of 
the magnetic response of the system. Nevertheless, in an effort to 
model inhomogeneous superconductors using London theory, one 
can write out the “inhomogeneous second London equation” for 
a superconductor with spatially-varying London penetration depth 
λ(�r) [50,51]:

�H(�r) = −�∇ ×
(
λ2(�r)�j(�r)

)

= −
(
λ2(�r) �∇ × �j(�r) + �∇λ2(�r) × �j(�r)

)
.

(C.1)

In the 2D limit, i.e. a thin film with thickness d � λ(x, y) lying 
parallel to the x − y plane carrying sheet current density �J (x, y) =
�j(�r) · d, we have:

�H(x, y) = −�∇ × (��J )
= −

(
� �∇ × �J + �∇� × �J

)

=
(
�∇2 g + �∇� · �∇g

)
ẑ,

(C.2)

where � = �(x, y), g = g(x, y), �∇ =
(

∂
∂x , ∂

∂ y

)
, and �J = �J (x, y) =

�∇ × (gẑ).
If one defines an inhomogeneous effective penetration depth 

�(x, y) in a SuperScreen model, Equation (C.2), rather than 
12
Equation (1), is solved numerically as follows. For a mesh with p
vertices, the effective penetration depth is represented by a p × 1
vector �. Equations (16) and (17) are updated according to:

Q.wT − �∇2 →
Q.wT − �T .∇2 − �∇� · �∇ (C.3)

The notation �∇f · �∇ indicates an inner (dot) product over the 
two spatial dimensions, resulting in a p × p matrix such that ( �∇f ·
�∇)g computes ( �∇ f (x, y)) · ( �∇g(x, y)) (see Appendix B).

Note that, unlike Equation (1) in which � is assumed to be con-
stant as a function of position �r , solutions to Equation (C.2) do not 
necessarily satisfy the fluxoid quantization condition � f

S = 0 for 
simply-connected superconducting regions S in which �∇�(�r ) �= 0, 
where

�
f
S =

∫
S

μ0 Hz(�r )d2r

︸ ︷︷ ︸
“flux part”

+
∮
S

μ0�(�r )�J (�r ) · d�r
︸ ︷︷ ︸

“supercurrent part”

. (C.4)

Appendix D. Numerical considerations

While the numerical method described in Section 3 is generally 
quite robust, it can break down for certain extreme geometries. 
The stream function g(x, y) represents the local magnetization or 
density of infinitesimal current loops. The z-component of the 
magnetic field at position �r = (x, y, z) from a film F with stream 
function g lying in a plane parallel to the x − y plane at vertical 
position z′ is given by (see Equations (4) and (5)):

Hz(�r) =
∫
F

Q z(�r,�r ′)g(x′, y′)d2r′, where

Q z(�r,�r ′) = 2(z − z′)2 − ρ2

4π [(z − z′)2 + ρ2]5/2

(D.1)

and ρ = √
(x − x′)2 + (y − y′)2. Eq. (D.1) is exact for a continuous 

stream function g . However, the discretized version of Eq. (D.1), 
in which the double integral over the film area F is replaced 
by a sum over triangular mesh elements, is only valid if δz =
z − z′ , the vertical distance between the film and the point at 
which the field is being evaluated, is large compared to the typ-
ical distance δr between vertices in the mesh representing the 
film. For z − z′ = δz � δr, the field Hz(�r) resembles that of a 
discrete set of isolated dipoles located at the mesh vertex po-
sitions, rather than that of a continuous sheet of current (see 
Fig. D.7(b)). This can lead to unphysical results when evaluating 
the field very close to the surface of a film (for example using 
Solution.field_at_position()), or when solving models 
involving multi-layer structures where the vertical spacing be-
tween layers is much smaller than the lateral extent of the films, 
in which case the iterative calculation (Section 2.4) may not con-
verge.

The limitation described above can be seen in the model of the 
largest SQUID susceptometer described in Section 5.4, which has a 
field coil inner radius of 6 μm and a total modeled area of roughly 
600 μm2. As shown in Fig. D.7, SuperScreen significantly over-
estimates the mutual inductance between the field coil and pickup 
loop when δz < δr because, in that case, the discretized version 
of Eq. (D.1) does not correctly compute the magnetic field due 
the stream functions of the superconducting layers. For the sake 
of computing mutual inductance as in Section 5.4, it is physically 
reasonable to artificially increase the vertical spacing between lay-
ers such that δz > δr because we expect the magnetic field at the 
pickup loop, a vertical distance δz away from the center of the field 
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Fig. D.7. SuperScreen results may be unreliable for multi-layer models where the 
spacing between layers is smaller than the typical vertex-to-vertex distance, δr. (a) 
Field coil - pickup loop mutual inductance for the largest SQUID suscepometer mod-
eled in Section 5.4 as a function of the minimum vertical spacing between layers, 
δz. The simulated mutual inductance is shown with blue circles, and a histogram of 
the mesh vertex-to-vertex distances δr is shown in orange (arb. y axis units). When 
δz � δr , the model significantly overestimates the mutual inductance. (b) and (c): 
Out-of-plane magnetic field μ0 Hz evaluated at the plane of the pickup loop (W1 
layer) for (b) the nominal layer spacing with δz < δr (indicated with a black × in 
(a)) and (c) δz > δr (indicated with a black + in (a)). For δr � δz, the magnetic field 
calculated using Eq. (D.1) resembles that of a discrete set of isolated dipoles rather 
than a continuous sheet of current. Note that (b) and (c) share the same color scale, 
which is saturated in (b).

Fig. D.8. Scaling of kernel matrix size p2 with mesh vertex spacing δr for a mesh 
with p vertices and t triangles for the device shown in Fig. D.7. (a) Typically the 
number of triangle t in the mesh is close to twice the number of vertices p. (b) 
Normalized histograms of vertex distances δr. The histogram bins are given by 
numpy.linspace(0.15, 0.65, 201). (c) The mean vertex-to-vertex distance 
〈δr〉 scales roughly as p−1/2. (d). The size of each p × p kernel matrix (of which 
where are (L

2

)
for a device with L layers) scales roughly as 〈δr〉−4. Note that in each 

row the colors correspond to the number of vertices p in the mesh, as indicated in 
(a), with mesh size increasing from dark to light colors.

parallel_method = "multiprocessing"
# parallel_method = "ray"

# Specify number of worker processes:
num_cpus = 4
# Or automatically use all
# available physical CPUs:
# num_cpus = None

_ = superscreen.solve_many(
device=device,
parallel_method=parallel_method,
num_cpus=num_cpus,
**solve_kwargs,

)

Code Block 4: Utilizing process-based parallelism in Super-
Screen given a superscreen.Device and solver options 
stored in a dictionary solve_kwargs.

coil, to fall off roughly as 
(
δz2 + R2

FC

)−3/2
, where RFC ≈ 6 μm � δz. 

However, in situations where δz is a critical dimension (in the 
sense that increasing it would invalidate the physical model), one’s 
only option is to decrease δr by increasing the density of the mesh.

For this reason, mutli-layer structures with closely-spaced lay-
ers are the most challenging class of problem to solve. The itera-
tive method used described in Section 2.4 is memory-intensive for 
models with a large mesh (many vertices p and triangles t , with 
typically t ≈ 2p) and/or many layers L, because the average dis-
tance between vertices decreases slowly with increasing number 
of vertices, 〈δr〉 ∼ p−1/2, whereas the size of the (dense floating-
point) p × p matrix that represents the dipole kernel Q z(�r, �r ′)
in Eq. (D.1) increases as p2. The end result is that the memory 
footprint of kernel matrix scales roughly as 〈δr〉−4, so decreasing 
the mean distance between vertices by a factor of 2 increases the 
memory required by a factor of roughly 16 (see Fig. D.8).

Furthermore, for a model with L layers there are 
(L

2

) = L(L −
1)/2 such kernel matrices needed for each iteration of the calcula-
tion outlined in Section 2.4. In superscreen.solve(), these (L

2

)
matrices are computed during the first iteration and then 

cached in memory for use in subsequent iterations. One can force 
the kernel matrices to be cached to disk if they would otherwise 
occupy too large a fraction of the available system memory using 
the cache_kernel_memory_cutoff argument, but this comes 
at a significant performance cost. In many cases, one can use 
lower-precision floating point numbers (e.g. using 32-bit single-
precision floats instead of the default 64-bit double-precision floats 
by setting device.solve_dtype = "float32") to reduce 
memory requirements without significantly impacting solution ac-
curacy.

Appendix E. Parallel processing

As discussed above, one can solve many models involving 
the same Device in parallel across multiple CPUs using the 
superscreen.solve_many() function. There are two meth-
ods available for process-based parallelism in SuperScreen: 
parallel_method="multiprocessing", which uses the 
multiprocessing package from the Python standard library, 
and parallel_method="ray", which uses the third-party dis-
tributed computing framework Ray3 [35,36]. Both approaches uti-
lize shared memory so that only a single copy is made of the large 

3 Note that at the time of writing, Ray support for Windows is experimental and 
under active development.
13
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# Assume that we have already created a Device and put all other inputs
# to superscreen.solve_many() into a dictionary called other_kwargs.
import psutil
import ray

# Specify the number of CPUs/cores to allocate.
num_cpus = 3
# Use at most N processes for a machine with N physical CPUs.
num_cpus = min(num_cpus, psutil.cpu_count(logical=False))

# Start a ray cluster
ray.init(num_cpus=num_cpus)
# Solve the models
solutions, paths = superscreen.solve_many(

parallel_method="ray",
**other_kwargs,

)
# Potentially call solve_many() again using the same ray cluster...
# Finally, shutdown the ray cluster
ray.shutdown()

Code Block 5: Starting and stopping Ray outside of superscreen.solve_many() using the Python API. See the “API and Package 
Reference” section of the Ray documentation for additional options in ray.init() [36].

# Start a ray cluster from the command line, e.g. bash
ray start -head -num-cpus=3

# Assume that we have already created a Device and put all other inputs
# to superscreen.solve_many() into a dictionary called other_kwargs.
import ray
# Connect to the existing ray cluster.
# If more than one ray cluster is running, specify
# which to connect to using address="{ip}:{port}".
ray.init(address="auto")
# Solve the models.
solutions, paths = superscreen.solve_many(

parallel_method="ray",
**other_kwargs,

)
# Potentially call solve_many() again using the same ray cluster...

# Shut down the ray cluster from the command line
ray stop

Code Block 6: Starting and stopping Ray outside of superscreen.solve_many() using the command line interface. See the Ray
documentation for additional options in ray start [36].
arrays required to solve a Device (the mesh, kernel matrix Q, 
Laplace operator ∇2, etc.), rather than num_cpus copies, where 
num_cpus is the number of worker processes.

There are three ways to invoke Ray from SuperScreen when 
running on a single machine, e.g. a multi-core CPU. The first is to 
simply pass the keyword argument parallel_method="ray"
when calling solve_many() (see Code Block 4). This will
automatically create a Ray cluster using (by default) all avail-
able physical CPU cores, solve the models in parallel, and then 
shut down the cluster before returning. The second method is to
manually create a Ray cluster using the Ray Python
application programming interface (API) prior to calling
solve_many(..., parallel_method="ray"), as demon-
14
strated in Code Block 5. The third method is to start a Ray
cluster using the command line interface (CLI), then connect 
to the existing cluster using the Python API prior to calling 
solve_many(..., parallel_method="ray"), as demon-
strated in Code Block 6. One of the latter two methods should be 
used for finer control over the Ray cluster. For example, if call-
ing solve_many() many times in a single session, one can use 
these methods to avoid the overhead of starting and stopping a 
Ray cluster multiple times.

Running superscreen.solve_many() in parallel across 
multiple nodes in a computing cluster is a simple extension to 
the method outlined in Code Block 6, although the specifics de-
pend upon the infrastructure of the cluster, e.g. job management 
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software. See the “Multi-Node Ray” section of the Ray documen-
tation for more details [36].
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