Publications

Articles are in reverse chronological order (most recent first).

You can also find my work on Google Scholar and arXiv.


Characterization of Two Fast-Turnaround Dry Dilution Refrigerators for Scanning Probe Microscopy

Published in Journal of Low Temperature Physics, 2024

Low-temperature scanning probe microscopes (SPMs) are critical for the study of quantum materials and quantum information science. Due to the rising costs of helium, cryogen-free cryostats have become increasingly desirable. However, they typically suffer from comparatively worse vibrations than cryogen-based systems, necessitating the understanding and mitigation of vibrations for SPM applications. Here we demonstrate the construction of two cryogen-free dilution refrigerator SPMs with minimal modifications to the factory default and we systematically characterize their vibrational performance. We measure the absolute vibrations at the microscope stage with geophones and use both microwave impedance microscopy and a scanning single-electron transistor to independently measure tip-sample vibrations. Additionally, we implement customized filtering and thermal anchoring schemes and characterize the cooling power at the scanning stage and the tip electron temperature. This work serves as a reference to researchers interested in cryogen-free SPMs, as such characterization is not standardized in the literature or available from manufacturers.

Citation: Mark E. Barber, Yifan Li, Jared Gibson, Jiachen Yu, Zhanzhi Jiang, Yuwen Hu, Zhurun Ji, Nabhanila Nandi, Jesse C. Hoke, Logan Bishop-Van Horn, Gilbert R. Arias, Dale J. Van Harlingen, Kathryn A. Moler, Zhi-Xun Shen, Angela Kou, and Benjamin E. Feldman "Characterization of Two Fast-Turnaround Dry Dilution Refrigerators for Scanning Probe Microscopy", Journal of Low Temperature Physics 215, 1-23 (2024). http://dx.doi.org/10.1007/s10909-023-03035-4


Vortex dynamics induced by scanning SQUID susceptometry

Published in Physical Review B, 2023

In this paper, we used both SuperScreen (a 2D London-Maxwell solver) and pyTDGL (a 2D time-dependent Ginzburg-Landau solver) to simulate the dynamics of quantum vortices generated in a superconducting thin film by a local magnetic field source. Our modeling allowed us to identify distinct “fingerprints” of the dynamics of a small number of vortex-antivortex pairs generated during measurements of the local magnetic response of a superconducting thin film close to its critical temperature.

Citation: Logan Bishop-Van Horn*, Eli Mueller*, and Kathryn A. Moler, "Vortex dynamics induced by scanning SQUID susceptometry ", Phys. Rev. B 107, 224509 (2023). https://doi.org/10.1103/PhysRevB.107.224509



Local imaging of diamagnetism in proximity-coupled niobium nanoisland arrays on gold thin films

Published in Physical Review B, 2022

This paper describes measurements and modeling of the local magnetic response of disordered arrays of proximity-coupled superconducting nano-islands.

Citation: Logan Bishop-Van Horn*, Irene P. Zhang*, Emily N. Waite, Ian Mondragon-Shem, Scott Jensen, Junseok Oh, Tom Lippman, Malcolm Durkin, Taylor L. Hughes, Nadya Mason, Kathryn A. Moler, and Ilya Sochnikov, "Local imaging of diamagnetism in proximity-coupled niobium nanoisland arrays on gold thin films", Phys. Rev. B 106, 054521 (2022) (Editors' Suggestion). https://doi.org/10.1103/PhysRevB.106.054521


SuperScreen: An open-source package for simulating the magnetic response of two-dimensional superconducting devices

Published in Computer Physics Communications, 2022

This paper introduces SuperScreen, an open-source Python package for simulating the response of 2D superconductors to trapped flux and applied time-independent or quasi-DC magnetic fields for any value of the effective magnetic penetration depth, Λ.

Citation: Logan Bishop-Van Horn and Kathryn A. Moler , "SuperScreen: An open-source package for simulating the magnetic response of two-dimensional superconducting devices", Computer Physics Communications Volume 280, November 2022, 108464. https://doi.org/10.1016/j.cpc.2022.108464


Imaging anisotropic vortex dynamics in FeSe

Published in Physical Review B, 2019

This paper describes measurements and modeling of anisotropic vortex pinning in the iron-based superconductor FeSe.

Citation: Irene P. Zhang, Johanna C. Palmstrom, Hilary Noad, Logan Bishop-Van Horn, Yusuke Iguchi, Zheng Cui, Eli Mueller, John R. Kirtley, Ian R. Fisher, and Kathryn A. Moler, "Imaging anisotropic vortex dynamics in FeSe", Phys. Rev. B 100, 024514 (2019). https://doi.org/10.1103/PhysRevB.100.024514


Cryogen-free variable temperature scanning SQUID microscope

Published in Review of Scientific Instruments, 2019

This paper describes the construction of a variable temperature scanning SQUID microscope in a dry cryostat, enabling precision magnetometry and susceptometry at sample temperatures from 2.8 K to over 100 K.

Citation: Logan Bishop-Van Horn, Zheng Cui, John R. Kirtley, and Kathryn A. Moler , "Cryogen-free variable temperature scanning SQUID microscope", Review of Scientific Instruments 90, 063705 (2019). https://doi.org/10.1063/1.5085008


The signature of inhomogeneous superconductivity

Published in Journal of Low Temperature Physics, 2016

This work describes the RF magnetic response of organic superconductors at low temperature and high magnetic field, where the field is applied parallel to the quasi-2D superconducting layers of the organic crystal. Under certain conditions, these materials are thought to host an unconventional phase known as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, in which Cooper pairs acquire a finite center of mass momentum leading to a spatially modulated superconducting order parameter.

Citation: Charles C. Agosta, Logan Bishop-Van Horn, Max Newman, "The Signature of Inhomogeneous Superconductivity", Journal of Low Temperature Physics 185, 220–229 (2016). https://doi.org/10.1007/s10909-016-1657-y